import pytest import torch import torchvision.models as tm from packaging import version from colossalai.testing import clear_cache_before_run, parameterize try: from colossalai._analyzer._subclasses import MetaTensorMode except: pass from tests.test_analyzer.test_fx.zoo import tm_models, tmm_models def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor): assert ( tensor.shape == meta_tensor.shape ), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match." assert ( tensor.dtype == meta_tensor.dtype ), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match." assert ( tensor.stride() == meta_tensor.stride() ), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match." def run_and_compare(model): x = torch.rand(2, 3, 224, 224, requires_grad=True) x_out = model(x) with MetaTensorMode(): meta_x = torch.rand(2, 3, 224, 224, requires_grad=True) meta_out = model(meta_x) compare_all(x_out, meta_out) x_out.sum().backward() meta_out.sum().backward() compare_all(x.grad, meta_x.grad) @pytest.mark.skipif(version.parse(torch.__version__) < version.parse("1.12.0"), reason="torch version < 12") @clear_cache_before_run() @parameterize("m", tm_models + tmm_models) def test_meta_mode_shape(m): run_and_compare(m()) if __name__ == "__main__": test_meta_mode_shape(tm.resnet18)