import os from functools import partial from tempfile import TemporaryDirectory import pytest import torch import torch.distributed as dist import torch.nn as nn from torch.optim import Adam import colossalai from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.utils.checkpoint_io.constant import GLOBAL_META_FILE_NAME from colossalai.utils.checkpoint_io.io import merge, save from colossalai.utils.checkpoint_io.meta import ParamDistMeta class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(shard: bool = False, zero: bool = False): model = DummyModel() if shard: model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2] if zero: dp_rank = dist.get_rank() // 2 model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank] if dp_rank != 0: model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype) for p in model.parameters(): p.grad = torch.ones_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def test_merge_global(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) with TemporaryDirectory() as output_dir: merge(dir_name, output_dir) assert len(os.listdir(output_dir)) == 0 with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer, max_shard_size_gb=80 / 1024**3) with TemporaryDirectory() as output_dir: merge(dir_name, output_dir) assert len(os.listdir(output_dir)) == 0 def run_dist(rank, world_size, port, test_fn): colossalai.launch(config={'parallel': { 'tensor': { 'mode': '1d', 'size': 2 } }}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_fn() def run_save_dist(dir_name: str, zero: bool): model, optimizer = prepare_model_optim(shard=True, zero=zero) rank = dist.get_rank() dp_world_size = dist.get_world_size() // 2 if not zero: dist_metas = { 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1) } else: dist_metas = { 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2], zero_numel=10, zero_orig_shape=[1, 10]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1]) } save(dir_name, model, optimizer, dist_meta=dist_metas) @pytest.mark.dist @pytest.mark.parametrize("zero", [False, True]) @rerun_if_address_is_in_use() def test_merge_tp_dp(zero: bool): with TemporaryDirectory() as dir_name: fn = partial(run_save_dist, dir_name, zero) world_size = 4 spawn(run_dist, world_size, test_fn=fn) with TemporaryDirectory() as output_dir: merge(dir_name, output_dir) assert len(os.listdir(output_dir)) == 5 global_meta = torch.load(os.path.join(output_dir, GLOBAL_META_FILE_NAME)) assert len(global_meta['meta']) == 1 meta = torch.load(os.path.join(output_dir, global_meta['meta'][0])) assert meta['dist_meta'] is None assert len(meta['params']) == 2 assert len(meta['model']) == 1 and len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(output_dir, meta['model'][0])) assert len(model_state_dict) == 2 assert model_state_dict['fc.weight'].size(1) == 20 optimizer_state_dict = torch.load(os.path.join(output_dir, meta['optimizer'][0])) assert len(optimizer_state_dict['state']) == 2 assert 'param_groups' in optimizer_state_dict and 'state' in optimizer_state_dict assert optimizer_state_dict['state'][0]['exp_avg'].size(1) == 20 assert optimizer_state_dict['state'][0]['exp_avg_sq'].size(1) == 20 if __name__ == '__main__': test_merge_global() test_merge_tp_dp(False) test_merge_tp_dp(True)