from typing import List, Optional, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed import ProcessGroup # from colossalai.tensor.moe_tensor.moe_info import MoeParallelInfo from torch.nn import CrossEntropyLoss from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.utils import is_flash_attn_2_available, logging from colossalai.lazy import LazyInitContext from colossalai.moe._operation import MoeInGradScaler, MoeOutGradScaler, all_to_all_uneven from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.shardformer.shard import ShardConfig from colossalai.shardformer.shard.utils import set_tensors_to_none # copied from modeling_deepseek.py class AddAuxiliaryLoss(torch.autograd.Function): """ The trick function of adding auxiliary (aux) loss, which includes the gradient of the aux loss during backpropagation. """ @staticmethod def forward(ctx, x, loss): assert loss.numel() == 1 ctx.dtype = loss.dtype ctx.required_aux_loss = loss.requires_grad return x @staticmethod def backward(ctx, grad_output): grad_loss = None if ctx.required_aux_loss: grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device) return grad_output, grad_loss class EPDeepseekMoE(nn.Module): def __init__(self): super(EPDeepseekMoE, self).__init__() def setup_ep(self, ep_group: ProcessGroup): ep_group = ep_group self.ep_size = dist.get_world_size(ep_group) if ep_group is not None else 1 self.ep_rank = dist.get_rank(ep_group) if ep_group is not None else 0 self.num_experts = self.config.n_routed_experts assert self.num_experts % self.ep_size == 0 self.ep_group = ep_group self.num_experts_per_ep = self.num_experts // self.ep_size self.expert_start_idx = self.ep_rank * self.num_experts_per_ep held_experts = self.experts[self.expert_start_idx : self.expert_start_idx + self.num_experts_per_ep] set_tensors_to_none(self.experts, exclude=set(held_experts)) for p in self.experts.parameters(): p.ep_group = ep_group @staticmethod def from_native_module(module: Union["DeepseekMoE", "DeepseekMLP"], *args, **kwargs) -> "EPDeepseekMoE": LazyInitContext.materialize(module) if module.__class__.__name__ == "DeepseekMLP": return module module.__class__ = EPDeepseekMoE assert "ep_group" in kwargs, "You should pass ep_group in SubModuleReplacementDescription via shard_config!!" module.setup_ep(kwargs["ep_group"]) return module def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: identity = hidden_states orig_shape = hidden_states.shape topk_experts_idx, topk_experts_weight, aux_loss = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) # [t0, t1, t2 ...] hidden_states = hidden_states.repeat_interleave( self.num_experts_per_tok, dim=0 ) # after repeat_interleave: [t0 t0 t1 t1 t2 t2 ... ] flat_topk_experts_idx = topk_experts_idx.view(-1) # [e0 e1 e2 ...] # The elements of flat_topk_token_idx are token ids, which are arranged in ascending order of expert ids. flat_topk_token_idx = flat_topk_experts_idx.argsort() # Now we adjust the order of the hidden states, also in ascending order of expert id dispatch_states = hidden_states[flat_topk_token_idx] input_split_sizes = flat_topk_experts_idx.bincount(minlength=self.num_experts) # [n0, n1, n2, n3] output_split_sizes = torch.zeros_like(input_split_sizes) # [n0, n1, n2, n3] [m0, m1, m2, m3] -> [n0, n1, m0, m1] [n2, n3, m2, m3] dist.all_to_all_single(output_split_sizes, input_split_sizes, group=self.ep_group) input_split_list = input_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist() output_split_list = output_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist() output_states, _ = all_to_all_uneven(dispatch_states, input_split_list, output_split_list, self.ep_group) output_states = MoeInGradScaler.apply(output_states, self.ep_size) if output_states.size(0) > 0: if self.num_experts_per_ep == 1: expert = self.experts[self.expert_start_idx] output_states = expert(output_states) else: output_states_splits = output_states.split(output_split_sizes.tolist()) output_states_list = [] for i, split_states in enumerate(output_states_splits): if split_states.size(0) == 0: # no token routed to this experts continue expert = self.experts[self.expert_start_idx + i % self.num_experts_per_ep] split_states = expert(split_states) output_states_list.append(split_states) output_states = torch.cat(output_states_list) output_states = MoeOutGradScaler.apply(output_states, self.ep_size) dispatch_states, _ = all_to_all_uneven(output_states, output_split_list, input_split_list, self.ep_group) recover_token_idx = torch.empty_like(flat_topk_token_idx) recover_token_idx[flat_topk_token_idx] = torch.arange( flat_topk_token_idx.size(0), device=flat_topk_token_idx.device ) output_hidden_states = dispatch_states[recover_token_idx] # t0 t0 t1 t1 t2 t2 output_hidden_states = output_hidden_states.view(-1, self.num_experts_per_tok, orig_shape[-1]) output_hidden_states = (output_hidden_states * topk_experts_weight[:, :, None]).sum(dim=-2) # (B*S, h) output_hidden_states = output_hidden_states.view(*orig_shape) output_hidden_states = AddAuxiliaryLoss.apply(output_hidden_states, aux_loss) if self.config.n_shared_experts is not None: output_hidden_states = output_hidden_states + self.shared_experts(identity) return output_hidden_states class DeepseekPipelineForwards: """ This class serves as a micro library for forward function substitution of Llama models under pipeline setting. """ @staticmethod def deepseek_model_forward( self: "DeepseekModel", input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ): r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" logger = logging.get_logger(__name__) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if stage_manager.is_first_stage(): # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds else: input_shape = hidden_states.shape[:-1] batch_size, seq_length = input_shape device = hidden_states.device seq_length_with_past = seq_length past_key_values_length = 0 # TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. if output_attentions: logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") output_attentions = False if output_hidden_states: logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") output_hidden_states = False if use_cache: logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") use_cache = False if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() # embed positions, for the first stage, hidden_states is the input embeddings, # for the other stages, hidden_states is the output of the previous stage if is_flash_attn_2_available(): # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length, sliding_window=self.config.sliding_window, ) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None start_idx, end_idx = stage_index[0], stage_index[1] for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, None, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if stage_manager.is_last_stage(): hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if stage_manager.is_last_stage(): return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) # always return dict for imediate stage return { "hidden_states": hidden_states, } @staticmethod def deepseek_for_causal_lm_forward( self: "DeepseekForCausalLM", input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, stage_manager: Optional[PipelineStageManager] = None, hidden_states: Optional[torch.FloatTensor] = None, stage_index: Optional[List[int]] = None, shard_config: ShardConfig = None, ): r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, MixtralForCausalLM >>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" logger = logging.get_logger(__name__) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. if output_attentions: logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") output_attentions = False if output_hidden_states: logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") output_hidden_states = False # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = DeepseekPipelineForwards.deepseek_model_forward( self.model, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, stage_manager=stage_manager, hidden_states=hidden_states, stage_index=stage_index, ) past_key_values = None if stage_manager.is_last_stage(): hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=None, hidden_states=outputs[0], attentions=None, ) else: out = {} hidden_states = outputs.get("hidden_states") out["hidden_states"] = hidden_states return out