from enum import Enum from typing import Dict, Optional, Union import torch import torch.distributed as dist import torch.nn as nn from colossalai.amp.naive_amp._fp16_optimizer import DynamicGradScaler from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.zero.sharded_model import ShardedModelV2 from torch import Tensor from torch.distributed import ProcessGroup from torch.nn.parameter import Parameter from torch.optim import Optimizer from ..sharded_model._zero3_utils import free_storage from ._utils import has_inf_or_nan class OptimState(Enum): SCALED = 1 UNSCALED = 2 class ShardedOptimizerV2(ColossalaiOptimizer): def __init__(self, adam_optim: Optimizer, sharded_model: Union[nn.Module, ShardedModelV2], cpu_offload: bool = False, initial_scale: float = 2**32, min_scale: float = 1, growth_factor: float = 2, backoff_factor: float = 0.5, growth_interval: float = 1000, hysteresis: float = 2, max_scale: int = 2**32, dp_process_group: Optional[ProcessGroup] = None, mp_process_group: Optional[ProcessGroup] = None) -> None: super().__init__(adam_optim) self.model: Union[nn.Module, ShardedModelV2] = sharded_model self.model_is_sharded = isinstance(sharded_model, ShardedModelV2) self.device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu') self.optim_state: OptimState = OptimState.UNSCALED self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA) self.mp_process_group = mp_process_group or gpc.get_group(ParallelMode.MODEL) # Grad scaler self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale, min_scale=min_scale, growth_factor=growth_factor, backoff_factor=backoff_factor, growth_interval=growth_interval, hysteresis=hysteresis, max_scale=max_scale) self._found_overflow: Tensor = torch.FloatTensor([0]).to(self.device) # Store fp32 params self.master_params: Dict[Parameter, Tensor] = {} for group in adam_optim.param_groups: for p in group['params']: if hasattr(p, 'ca_attr'): assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model' self.master_params[p] = p.ca_attr.payload(self.device) if dist.get_rank() == 0: print(f'load payload {p._name} {self.master_params[p].shape}') else: self.master_params[p] = p.data.to(device=self.device) if torch.is_floating_point(self.master_params[p]) and self.master_params[p].dtype != torch.float: self.master_params[p] = self.master_params[p].to(torch.float) def step(self, *args, **kwargs): # unscale grads if scaled if self.optim_state == OptimState.SCALED: self._unscale_grads() found_inf = self._check_overflow() self.grad_scaler.update(found_inf) if found_inf: self.zero_grad() return # Write master param to p.data for group in self.optim.param_groups: for p in group['params']: p.data = self.master_params[p] ret = self.optim.step(*args, **kwargs) # Write master param to payload for group in self.optim.param_groups: for p in group['params']: if hasattr(p, 'ca_attr'): if dist.get_rank() == 0: print(f'write {p._name} {p.shape} orig_shape {p.ca_attr._origin_shape} \ payload shape {p.ca_attr._param_payload.shape} sharded {p.ca_attr.is_sharded}') p.ca_attr.set_payload(p.data) # We cannot set p.data to None directly, so we free storage free_storage(p.data) return ret def backward(self, loss: Tensor) -> None: loss = self.loss_scale * loss self.optim_state = OptimState.SCALED if self.model_is_sharded: if dist.get_rank() == 0: print('sharded model backward') self.model.backward(loss) if dist.get_rank() == 0: print('sharded model backward done') else: super().backward(loss) def backward_by_grad(self, tensor: Tensor, grad: Tensor) -> None: if self.model_is_sharded: self.model.backward_by_grad(tensor, grad) else: super().backward_by_grad(tensor, grad) def clip_grad_norm(self, model: nn.Module, max_norm: float): if self.optim_state == OptimState.SCALED: self._unscale_grads() return super().clip_grad_norm(model, max_norm) @property def loss_scale(self): return self.grad_scaler.scale def _check_overflow(self): # clear previous overflow record self._found_overflow.fill_(0.0) # check for overflow for group in self.optim.param_groups: for p in group['params']: if has_inf_or_nan(p.grad): self._found_overflow.fill_(1.0) break # all-reduce across dp group dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.dp_process_group) # all-reduce over model parallel group dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.mp_process_group) return self._found_overflow.item() > 0 def _unscale_grads(self): assert self.optim_state == OptimState.SCALED for group in self.optim.param_groups: for p in group['params']: if p.grad is not None: p.grad.data.div_(self.loss_scale) self.optim_state = OptimState.UNSCALED