import torch import triton import triton.language as tl @triton.jit def fused_rotary_emb( q, k, cos_cache, sin_cache, cumsum_lengths, q_token_stride, q_head_stride, k_token_stride, k_head_stride, head_dim_stride, cos_token_stride, cos_dim_stride, q_total_tokens, Q_HEAD_NUM: tl.constexpr, K_HEAD_NUM: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_HEAD: tl.constexpr, BLOCK_SIZE: tl.constexpr, N_ELEMENTS: tl.constexpr, ): block_head_index = tl.program_id(0) block_group_index = tl.program_id(1) group_token_index = tl.program_id(2) idx = block_group_index * BLOCK_SIZE + group_token_index # original seq_idx and pos cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS)) ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0)) cos = tl.load( cos_cache + ori_seq_idx * cos_token_stride + tl.arange(0, HEAD_DIM // 2) * cos_dim_stride ) # [1,HEAD_DIM//2] sin = tl.load(sin_cache + ori_seq_idx * cos_token_stride + tl.arange(0, HEAD_DIM // 2) * cos_dim_stride) cur_head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD) dim_range0 = tl.arange(0, HEAD_DIM // 2) dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM) off_q0 = ( idx * q_token_stride + cur_head_range[None, :, None] * q_head_stride + dim_range0[None, None, :] * head_dim_stride ) off_q1 = ( idx * q_token_stride + cur_head_range[None, :, None] * q_head_stride + dim_range1[None, None, :] * head_dim_stride ) off_k0 = ( idx * k_token_stride + cur_head_range[None, :, None] * k_head_stride + dim_range0[None, None, :] * head_dim_stride ) off_k1 = ( idx * q_token_stride + cur_head_range[None, :, None] * k_head_stride + dim_range1[None, None, :] * head_dim_stride ) q_0 = tl.load( q + off_q0, mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)), other=0.0, ) q_1 = tl.load( q + off_q1, mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)), other=0.0, ) k_0 = tl.load( k + off_k0, mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)), other=0.0, ) k_1 = tl.load( k + off_k1, mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)), other=0.0, ) out_q0 = q_0 * cos - q_1 * sin out_q1 = k_0 * sin + k_1 * cos out_k0 = q_0 * cos - q_1 * sin out_k1 = k_0 * sin + k_1 * cos # concat tl.store( q + off_q0, out_q0, mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)), ) tl.store( q + off_q1, out_q1, mask=((cur_head_range[None, :, None] < Q_HEAD_NUM) & (idx < q_total_tokens)), ) tl.store( k + off_k0, out_k0, mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)), ) tl.store( k + off_k1, out_k1, mask=((cur_head_range[None, :, None] < K_HEAD_NUM) & (idx < q_total_tokens)), ) def fused_rotary_embedding( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, lengths, ): """ Args: q: query tensor, [total_tokens, head_num, head_dim] k: key tensor, [total_tokens, head_num, head_dim] cos: cosine for rotary embedding, [max_position_len, head_dim] sin: sine for rotary embedding, [max_position_len, head_dim] lengths [num_seqs] """ q_total_tokens, q_head_num, head_dim = q.shape assert q.size(0) == k.size(0) BLOCK_HEAD = 4 BLOCK_SIZE = 8 cumsum_lens = torch.cumsum(lengths, dim=0) grid = (triton.cdiv(q_head_num, BLOCK_HEAD), triton.cdiv(q_total_tokens, BLOCK_SIZE), BLOCK_SIZE) if head_dim >= 128: num_warps = 8 else: num_warps = 4 q_token_stride = q.stride(0) q_head_stride = q.stride(1) head_dim_stride = q.stride(2) k_token_stride = k.stride(0) k_head_stride = k.stride(1) k_head_num = q.shape[1] cos_token_stride = cos.stride(0) cos_dim_stride = cos.stride(1) fused_rotary_emb[grid]( q, k, cos, sin, cumsum_lens, q_token_stride, q_head_stride, k_token_stride, k_head_stride, head_dim_stride, cos_token_stride, cos_dim_stride, q_total_tokens, Q_HEAD_NUM=q_head_num, K_HEAD_NUM=k_head_num, HEAD_DIM=head_dim, BLOCK_HEAD=BLOCK_HEAD, BLOCK_SIZE=BLOCK_SIZE, N_ELEMENTS=triton.next_power_of_2(q_total_tokens), num_warps=num_warps, )