import pytest import torch from packaging import version try: from colossalai.kernel.triton import int8_rotary_embedding_fwd HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") try: from colossalai.inference.quant.smoothquant.models import LLamaSmoothquantAttention HAS_TORCH_INT = True except ImportError: HAS_TORCH_INT = False print("Please install torch_int from https://github.com/Guangxuan-Xiao/torch-int") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") import math import torch from torch.nn import functional as F def torch_context_attention(xq, xk, xv, bs, seqlen, num_head, head_dim): """ adapted from https://github.com/ModelTC/lightllm/blob/main/lightllm/models/bloom/triton_kernel/context_flashattention_nopad.py#L253 """ xq = xq.view(bs, seqlen, num_head, head_dim) xk = xk.view(bs, seqlen, num_head, head_dim) xv = xv.view(bs, seqlen, num_head, head_dim) mask = torch.tril(torch.ones(seqlen, seqlen), diagonal=0).unsqueeze(0).unsqueeze(0).cuda() mask[mask == 0.0] = -100000000.0 mask = mask.repeat(bs, num_head, 1, 1) keys = xk values = xv xq = xq.transpose(1, 2) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim) scores = F.softmax(scores.float() + mask, dim=-1).type_as(xq) output = torch.matmul(scores, values).transpose(1, 2).contiguous().reshape(-1, num_head, head_dim) return output @pytest.mark.skipif( not TRITON_CUDA_SUPPORT or not HAS_TRITON or not HAS_TORCH_INT, reason="triton requires cuda version to be higher than 11.4 or not install torch_int", ) def test_llama_context_attention(): head_num = 2 seq_len = 32 head_dim = 64 dtype = torch.float hidden_size = head_num * head_dim smooth_attn = LLamaSmoothquantAttention(head_num * head_dim, head_num) smooth_attn.q_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8) smooth_attn.k_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8) smooth_attn.v_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8) smooth_attn.out_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8) smooth_attn.out_proj.weight[:, 1:hidden_size] = torch.zeros(hidden_size - 1, device="cuda").to(torch.int8) qkv_weight_scale = 1.0 ones = torch.ones(hidden_size, hidden_size, dtype=torch.float, device="cuda") smooth_attn = smooth_attn.to("cuda") input = torch.randint(-20, 20, (1, seq_len, head_num * head_dim), dtype=torch.int8, device="cuda") input_scale = 1 / 20.0 output = torch.matmul(input.to(torch.float) * input_scale, ones) qkv_max_out = torch.max(torch.abs(output)) / 127 smooth_attn.q_proj.a = torch.tensor(input_scale * qkv_weight_scale / qkv_max_out) smooth_attn.k_proj.a = torch.tensor(input_scale * qkv_weight_scale / qkv_max_out) smooth_attn.v_proj.a = torch.tensor(input_scale * qkv_weight_scale / qkv_max_out) q = smooth_attn.q_proj(input) k = smooth_attn.k_proj(input) v = smooth_attn.v_proj(input) cos_shape = (seq_len, head_dim // 2) cos = torch.ones(cos_shape, dtype=dtype, device="cuda") sin = torch.zeros(cos_shape, dtype=dtype, device="cuda") in_scale = torch.tensor([qkv_max_out], device="cuda") out_scale = torch.tensor([qkv_max_out], device="cuda") int8_rotary_embedding_fwd(q.view(-1, head_num, head_dim), cos, sin, in_scale.item(), out_scale.item()) int8_rotary_embedding_fwd(k.view(-1, head_num, head_dim), cos, sin, in_scale.item(), out_scale.item()) q = q.to(torch.float) * out_scale k = k.to(torch.float) * out_scale v = v.to(torch.float) * out_scale torch_out = torch_context_attention(q.clone(), k.clone(), v.clone(), 1, seq_len, head_num, head_dim) attn_out_max = torch.max(torch.abs(torch_out)) / 127 output = torch.matmul(torch_out.view(-1, seq_len, head_num * head_dim), ones) smooth_attn.q_output_scale = torch.tensor(qkv_max_out) smooth_attn.k_output_scale = torch.tensor(qkv_max_out) smooth_attn.v_output_scale = torch.tensor(qkv_max_out) smooth_attn.q_rotary_output_scale = torch.tensor(qkv_max_out) smooth_attn.k_rotary_output_scale = torch.tensor(qkv_max_out) smooth_attn.attn_output_scale = torch.tensor(attn_out_max) smooth_attn.out_proj.a = torch.tensor([attn_out_max]) torch_out = ( (torch_out / smooth_attn.attn_output_scale) .round() .clamp(-128, 127) .to(torch.int8) .view(-1, seq_len, head_num * head_dim) ) torch_out = smooth_attn.out_proj(torch_out) torch_out = torch_out.to(torch.float) smooth_attn = smooth_attn.to("cuda") smooth_out, _, _ = smooth_attn(input, (cos, sin)) smooth_out = smooth_out.to(torch.float) assert torch.allclose( torch_out.cpu(), smooth_out.cpu(), rtol=1e-1, atol=1e-1 ), "outputs from triton and torch are not matched" if __name__ == "__main__": test_llama_context_attention()