import math from copy import copy import torch from torch.testing import assert_close from colossalai.kernel.kernel_loader import FlashAttentionLoader, FlashAttentionWithCustomMaskLoader from colossalai.shardformer.layer import AttnMaskType, ColoAttention from colossalai.shardformer.layer.attn import invert_mask from colossalai.testing import clear_cache_before_run, parameterize from colossalai.utils import get_current_device, set_seed DTYPE = [torch.float16, torch.bfloat16] B, N, S, D = 2, 8, 256, 32 TOL_MAP = { torch.float16: {"atol": 5e-4, "rtol": 2e-3}, torch.bfloat16: {}, } def attention_ref(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask=None, dropout_p=0.0): head_dim = q.size(-1) attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_dim) if attn_mask is not None: attn_weights = attn_weights + attn_mask attn_weights = torch.softmax(attn_weights, dim=-1, dtype=torch.float).to(q.dtype) attn_weights = torch.dropout(attn_weights, p=dropout_p, train=True) attn_output = torch.matmul(attn_weights, v) return attn_output def gen_padded_kwargs(dtype: torch.dtype): padding_mask = torch.ones((B, S), dtype=torch.int, device=get_current_device()) padding_mask[0, : S // 4] = 0 return ( ColoAttention.prepare_attn_kwargs((B, 1, S, S), dtype, padding_mask.device, q_padding_mask=padding_mask), padding_mask, ) def gen_padded_causal_kwargs(dtype: torch.dtype): padding_mask = torch.ones((B, S), dtype=torch.int, device=get_current_device()) padding_mask[0, S // 2 :] = 0 return ( ColoAttention.prepare_attn_kwargs( (B, 1, S, S), dtype, padding_mask.device, q_padding_mask=padding_mask, is_causal=True ), padding_mask, ) def gen_causal_kwargs(dtype: torch.dtype): return ColoAttention.prepare_attn_kwargs((B, 1, S, S), dtype, get_current_device(), is_causal=True), None def gen_custom_kwargs(dtype: torch.dtype): attn_mask = torch.ones((B, S, S), dtype=dtype, device=get_current_device()) attn_mask[0, : S // 2, S // 2 :] = 0 attn_mask[0, S // 2 :, : S // 2] = 0 attn_mask[1, :, S // 4 :] = 0 attn_mask = invert_mask(attn_mask).unsqueeze(1) assert not torch.all(attn_mask != 0, dim=-1).any() return {"attention_mask": attn_mask}, None def post_process_kwargs_for_raw_attn(attn_kwargs: dict): if "attention_mask_type" in attn_kwargs: attn_kwargs = copy(attn_kwargs) mask_type = attn_kwargs.pop("attention_mask_type") attn_kwargs["is_causal"] = mask_type in (AttnMaskType.CAUSAL, AttnMaskType.PADDED_CAUSAL) return attn_kwargs def check_attn_func(dtype: torch.dtype, attn_func, attn_kwargs: dict, padding_mask=None): tols = TOL_MAP[dtype] q = torch.rand((B, N, S, D), dtype=dtype, device=get_current_device(), requires_grad=True) k = torch.rand((B, N, S, D), dtype=dtype, device=get_current_device(), requires_grad=True) v = torch.rand((B, N, S, D), dtype=dtype, device=get_current_device(), requires_grad=True) q_flash = q.clone().detach().requires_grad_(True) k_flash = k.clone().detach().requires_grad_(True) v_flash = v.clone().detach().requires_grad_(True) attn_mask = attn_kwargs.get("attention_mask", None) ref_output = attention_ref(q, k, v, attn_mask) output = attn_func(q_flash, k_flash, v_flash, **attn_kwargs) if padding_mask is not None: # [B, Sq] -> [B, 1, Sq, 1] padding_mask = padding_mask[:, None, :, None].logical_not() ref_output = ref_output.masked_fill(padding_mask, 0) output = output.masked_fill(padding_mask, 0) assert_close(output, ref_output, **tols) output.mean().backward() ref_output.mean().backward() assert_close(q.grad, q_flash.grad, **tols) assert_close(k.grad, k_flash.grad, **tols) assert_close(v.grad, v_flash.grad, **tols) @clear_cache_before_run() @parameterize("dtype", DTYPE) def test_flash_attn_func(dtype: torch.dtype): torch.backends.cudnn.deterministic = True set_seed(0) # (func, name, need_postprocess) avail_attn_funcs = [(ColoAttention.attention, "coloattn", False)] avail_custom_mask_attn_funcs = [(ColoAttention.attention, "coloattn", False)] avail_padding_mask_attn_funcs = [(ColoAttention.attention, "coloattn", False)] for ext_cls in FlashAttentionLoader.REGISTRY: ext = ext_cls() if ext.is_available(): ext.assert_compatible() avail_attn_funcs.append((ext.load(), ext.name, True)) for ext_cls in FlashAttentionWithCustomMaskLoader.REGISTRY: ext = ext_cls() if ext.is_available(): ext.assert_compatible() avail_custom_mask_attn_funcs.append((ext.load(), ext.name, True)) test_sets = { "none": (lambda dtype: ({}, None), avail_attn_funcs), "padded": (gen_padded_kwargs, avail_padding_mask_attn_funcs), "padded_causal": (gen_padded_causal_kwargs, avail_padding_mask_attn_funcs), "causal": (gen_causal_kwargs, avail_attn_funcs), "custom": (gen_custom_kwargs, avail_custom_mask_attn_funcs), } for mask_type, (gen_kwargs_func, attn_funcs) in test_sets.items(): attn_kwargs, padding_mask = gen_kwargs_func(dtype) for attn_func, name, need_postprocess in attn_funcs: print(f"{dtype}, {name}, {mask_type}") if mask_type == "padded": pass if need_postprocess: check_attn_func(dtype, attn_func, post_process_kwargs_for_raw_attn(attn_kwargs), padding_mask) else: check_attn_func(dtype, attn_func, attn_kwargs, padding_mask) if __name__ == "__main__": test_flash_attn_func()