import torch from torch.fx import GraphModule from torch.utils.checkpoint import checkpoint from colossalai.fx import ColoTracer from colossalai.testing import clear_cache_before_run class MLP(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(4, 4) self.linear2 = torch.nn.Linear(4, 4) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x # Simple module for demonstration class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.mlp_1 = MLP() self.mlp_2 = MLP() self.output = torch.nn.Linear(4, 4) def forward(self, x): x = checkpoint(self.mlp_1, x) x = checkpoint(self.mlp_2, x) x = self.output(x) return x @clear_cache_before_run() def test_activation_checkpoint_annotation(): module = MyModule() # test tracing with activation checkpoint tracer = ColoTracer(trace_act_ckpt=True) graph = tracer.trace(module) gm = GraphModule(module, graph) for node in gm.graph.nodes: if node.name in ["mlp_1_linear1", "mlp_1_linear2"]: assert node.meta.get("activation_checkpoint", -1) == 0 for node in gm.graph.nodes: if node.name in ["mlp_2_linear1", "mlp_2_linear2"]: assert node.meta.get("activation_checkpoint", -1) == 1 tracer = ColoTracer(trace_act_ckpt=False) graph = tracer.trace(module) gm = GraphModule(module, graph) for node in gm.graph.nodes: assert not hasattr(node, "activation_checkpoint") if __name__ == "__main__": test_activation_checkpoint_annotation()