import torch import torch.distributed as dist from torch.distributed.distributed_c10d import _get_default_group from torch.testing import assert_close from colossalai import launch from colossalai.accelerator import get_accelerator from colossalai.quantization.fp8 import _all_gather_fp8 from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn @parameterize( "shape", [(3, 7, 16)], ) @parameterize("dtype", [torch.bfloat16, torch.float16]) @parameterize("fp8_format", ["e4m3", "e5m2"]) @parameterize("async_op", [True, False]) def check_4gpu(shape, dtype, fp8_format, async_op): world_size = dist.get_world_size() x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) output_list = [torch.empty_like(x) for _ in range(world_size)] output_list_fp8 = [torch.empty_like(x) for _ in range(world_size)] fp8_handle = _all_gather_fp8( output_list_fp8, x, group=_get_default_group(), fp8_format=fp8_format, async_op=async_op ) origin_hanle = dist.all_gather(output_list, x, group=_get_default_group(), async_op=async_op) if async_op: fp8_handle.wait() origin_hanle.wait() assert_close(output_list, output_list_fp8, rtol=0.1, atol=0.1) def run_dist(rank, world_size, port): launch(rank=rank, world_size=world_size, port=port, host="localhost") check_4gpu() @rerun_if_address_is_in_use() def test_all_gather(): spawn(run_dist, 4) if __name__ == "__main__": test_all_gather()