import timm.models as tmm import torchvision.models as tm # input shape: (batch_size, 3, 224, 224) tm_models = [ tm.alexnet, tm.convnext_base, tm.densenet121, # tm.efficientnet_v2_s, # tm.googlenet, # output bad case # tm.inception_v3, # bad case tm.mobilenet_v2, tm.mobilenet_v3_small, tm.mnasnet0_5, tm.resnet18, tm.regnet_x_16gf, tm.resnext50_32x4d, tm.shufflenet_v2_x0_5, tm.squeezenet1_0, # tm.swin_s, # fx bad case tm.vgg11, tm.vit_b_16, tm.wide_resnet50_2, ] tmm_models = [ tmm.beit_base_patch16_224, tmm.beitv2_base_patch16_224, tmm.cait_s24_224, tmm.coat_lite_mini, tmm.convit_base, tmm.deit3_base_patch16_224, tmm.dm_nfnet_f0, tmm.eca_nfnet_l0, tmm.efficientformer_l1, # tmm.ese_vovnet19b_dw, tmm.gmixer_12_224, tmm.gmlp_b16_224, # tmm.hardcorenas_a, tmm.hrnet_w18_small, tmm.inception_v3, tmm.mixer_b16_224, tmm.nf_ecaresnet101, tmm.nf_regnet_b0, # tmm.pit_b_224, # pretrained only # tmm.regnetv_040, # tmm.skresnet18, # tmm.swin_base_patch4_window7_224, # fx bad case # tmm.tnt_b_patch16_224, # bad case tmm.vgg11, tmm.vit_base_patch16_18x2_224, tmm.wide_resnet50_2, ]