import argparse __all__ = ["parse_args"] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--distplan", type=str, default="CAI_Gemini", help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].", ) parser.add_argument( "--tp_degree", type=int, default=1, help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.", ) parser.add_argument( "--placement", type=str, default="cpu", help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", ) parser.add_argument( "--shardinit", action="store_true", help="Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.", ) parser.add_argument("--lr", type=float, required=True, help="initial learning rate") parser.add_argument("--epoch", type=int, required=True, help="number of epoch") parser.add_argument("--data_path_prefix", type=str, required=True, help="location of the train data corpus") parser.add_argument( "--eval_data_path_prefix", type=str, required=True, help="location of the evaluation data corpus" ) parser.add_argument("--tokenizer_path", type=str, required=True, help="location of the tokenizer") parser.add_argument("--max_seq_length", type=int, default=512, help="sequence length") parser.add_argument( "--refresh_bucket_size", type=int, default=1, help="This param makes sure that a certain task is repeated for this time steps to \ optimize on the back propagation speed with APEX's DistributedDataParallel", ) parser.add_argument( "--max_predictions_per_seq", "--max_pred", default=80, type=int, help="The maximum number of masked tokens in a sequence to be predicted.", ) parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="accumulation_steps") parser.add_argument("--train_micro_batch_size_per_gpu", default=2, type=int, required=True, help="train batch size") parser.add_argument("--eval_micro_batch_size_per_gpu", default=2, type=int, required=True, help="eval batch size") parser.add_argument("--num_workers", default=8, type=int, help="") parser.add_argument("--async_worker", action="store_true", help="") parser.add_argument("--bert_config", required=True, type=str, help="location of config.json") parser.add_argument("--wandb", action="store_true", help="use wandb to watch model") parser.add_argument("--wandb_project_name", default="roberta", help="wandb project name") parser.add_argument("--log_interval", default=100, type=int, help="report interval") parser.add_argument("--log_path", type=str, required=True, help="log file which records train step") parser.add_argument("--tensorboard_path", type=str, required=True, help="location of tensorboard file") parser.add_argument( "--colossal_config", type=str, required=True, help="colossal config, which contains zero config and so on" ) parser.add_argument( "--ckpt_path", type=str, required=True, help="location of saving checkpoint, which contains model and optimizer" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--vscode_debug", action="store_true", help="use vscode to debug") parser.add_argument("--load_pretrain_model", default="", type=str, help="location of model's checkpoint") parser.add_argument( "--load_optimizer_lr", default="", type=str, help="location of checkpoint, which contains optimizer, learning rate, epoch, shard and global_step", ) parser.add_argument("--resume_train", action="store_true", help="whether resume training from a early checkpoint") parser.add_argument("--mlm", default="bert", type=str, help="model type, bert or deberta") parser.add_argument("--checkpoint_activations", action="store_true", help="whether to use gradient checkpointing") args = parser.parse_args() return args