import copy
from typing import Any, Callable, Dict, Tuple

import pytest
import torch
import torch.nn as nn
from coati.models.base import Actor, Critic, RewardModel, get_base_model
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
from coati.models.chatglm import ChatGLMActor
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
from coati.models.generation import generate
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.llama import LlamaActor
from coati.models.lora import LoraLinear, convert_to_lora_module
from coati.models.loss import GPTLMLoss, LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from coati.models.utils import calc_action_log_probs, masked_mean


@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seq_len", [32])
@pytest.mark.parametrize(
    "actor_maker",
    [
        lambda: BLOOMActor(),
        lambda: GPTActor(),
        # HACK: skip llama due to long execution time
        # lambda: LlamaActor(),
        lambda: OPTActor(),
    ],
)
@pytest.mark.parametrize(
    "generate_kwargs",
    [
        {
            "max_length": 64,
            "use_cache": True,
            "do_sample": True,
            "temperature": 1.0,
            "top_k": 50,
        }
    ],
)
def test_generation(actor_maker: Callable[[], Actor], batch_size: int, seq_len: int, generate_kwargs: Dict[str, Any]):
    class MockTokenizer:
        def __init__(self):
            self.padding_side = "left"
            self.eos_token_id = 0
            self.pad_token_id = 0

    actor = actor_maker()
    input_ids = torch.randint(0, 100, (batch_size, seq_len)).cuda()
    tokenizer = MockTokenizer()
    sequences = generate(actor.cuda(), input_ids, tokenizer, **generate_kwargs)
    assert sequences.shape == (batch_size, generate_kwargs["max_length"])


def test_utils():
    fn_input = {"tensor": torch.ones((10,)), "mask": torch.randint(0, 2, (10,))}
    fn_output = masked_mean(dim=0, **fn_input)
    assert fn_output.dim() == 0
    assert torch.allclose(fn_output, torch.tensor(1.0))

    batch_size = 4
    seq_len = 32
    num_labels = 10
    num_actions = 2
    fn_input = {
        "logits": torch.randn((batch_size, seq_len, num_labels)),
        "sequences": torch.randint(0, num_labels, (batch_size, seq_len)),
        "num_actions": num_actions,
    }
    fn_output = calc_action_log_probs(**fn_input)
    assert fn_output.shape == (batch_size, num_actions)


@pytest.mark.parametrize("lora_rank", [4])
@pytest.mark.parametrize("num_dim", [32])
@pytest.mark.parametrize("num_layers", [4])
def test_lora(lora_rank: int, num_dim: int, num_layers: int):
    model = nn.ModuleList([nn.Linear(num_dim, num_dim) for _ in range(num_layers)])
    lora_model = convert_to_lora_module(model, lora_rank)
    assert isinstance(lora_model, nn.ModuleList)
    for i in range(num_layers):
        assert isinstance(lora_model[i], LoraLinear)
        assert lora_model[i].lora_A.shape == (lora_rank, num_dim)
        assert lora_model[i].lora_B.shape == (num_dim, lora_rank)

    old_model = copy.deepcopy(lora_model)
    for i in range(num_layers):
        assert isinstance(lora_model[i], LoraLinear)
        assert torch.allclose(old_model[i].weight, lora_model[i].weight)
        assert torch.allclose(old_model[i].bias, lora_model[i].bias)
        assert torch.allclose(old_model[i].lora_B @ old_model[i].lora_A, lora_model[i].lora_B @ lora_model[i].lora_A)
    optimizer = torch.optim.Adam(lora_model.parameters())
    x = torch.randn(8, num_dim)
    for i in range(num_layers):
        x = lora_model[i](x)
    loss = x.sum()
    loss.backward()
    optimizer.step()
    for i in range(num_layers):
        assert isinstance(lora_model[i], LoraLinear)
        assert torch.allclose(old_model[i].weight, lora_model[i].weight)
        assert torch.allclose(old_model[i].bias, lora_model[i].bias)
        assert not torch.allclose(
            old_model[i].lora_B @ old_model[i].lora_A, lora_model[i].lora_B @ lora_model[i].lora_A
        )


@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [128])
@pytest.mark.parametrize(
    "models_maker",
    [
        lambda: (BLOOMActor(), BLOOMCritic(), BLOOMRM()),
        lambda: (GPTActor(), GPTCritic(), GPTRM()),
        # HACK: skip llama due to long execution time
        # lambda: (LlamaActor(), LlamaCritic(), LlamaRM()),
        lambda: (OPTActor(), OPTCritic(), OPTRM()),
        lambda: (ChatGLMActor(), None, None),
    ],
)
@torch.no_grad()
def test_models(models_maker: Callable[[], Tuple[Actor, Critic, RewardModel]], batch_size: int, seq_len: int):
    actor_input = {
        "input_ids": torch.randint(0, 100, (batch_size, seq_len)),
        "attention_mask": torch.randint(0, 2, (batch_size, seq_len)),
    }
    critic_input = {
        "sequences": torch.randint(0, 100, (batch_size, seq_len)),
        "attention_mask": torch.randint(0, 2, (batch_size, seq_len)),
    }
    rm_input = {
        "sequences": torch.randint(0, 100, (batch_size, seq_len)),
        "attention_mask": torch.randint(0, 2, (batch_size, seq_len)),
    }

    actor, critic, rm = models_maker()
    if isinstance(actor, ChatGLMActor):
        actor = actor.float()
        tokenizer = ChatGLMTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
        chatglm_special_token = torch.tensor([tokenizer.gmask_token_id, tokenizer.bos_token_id]).repeat(batch_size, 1)
        actor_input = {
            "input_ids": torch.cat(
                (
                    torch.randint(0, 100, (batch_size, seq_len // 2)),
                    chatglm_special_token,
                    torch.randint(0, 100, (batch_size, seq_len // 2 - 2)),
                ),
                dim=1,
            ),
            "attention_mask": torch.randint(0, 2, (batch_size, 1, seq_len, seq_len)),
        }
    assert isinstance(actor, Actor)
    get_base_model(actor)
    actor_output = actor(**actor_input)
    assert actor_output.logits.shape[:2] == (batch_size, seq_len)

    if critic:
        assert isinstance(critic, Critic)
        get_base_model(critic)
        critic_output = critic(**critic_input)
        assert critic_output.shape == (batch_size,)

    if rm:
        assert isinstance(rm, RewardModel)
        get_base_model(rm)
        rm_output = rm(**rm_input)
        assert rm_output.shape == (batch_size,)


@pytest.mark.parametrize("batch_size", [16])
@pytest.mark.parametrize("seq_len", [128])
@pytest.mark.parametrize("num_labels", [100])
def test_loss(batch_size: int, seq_len: int, num_labels: int):
    loss = GPTLMLoss()
    loss_input = {
        "logits": torch.randn(batch_size, seq_len, num_labels),
        "labels": torch.randint(0, num_labels, (batch_size, seq_len)),
    }
    loss(**loss_input)

    loss = PolicyLoss()
    loss_input = {
        "log_probs": torch.randn(
            batch_size,
        ),
        "old_log_probs": torch.randn(
            batch_size,
        ),
        "advantages": torch.randn(
            batch_size,
        ),
    }
    loss(**loss_input)

    loss = ValueLoss()
    loss_input = {
        "values": torch.randn(
            batch_size,
        ),
        "old_values": torch.randn(
            batch_size,
        ),
        "reward": torch.randn(
            batch_size,
        ),
    }
    loss(**loss_input)

    loss = LogSigLoss()
    loss_input = {
        "chosen_reward": torch.randn(
            batch_size,
        ),
        "reject_reward": torch.randn(
            batch_size,
        ),
    }
    loss(**loss_input)

    loss = LogExpLoss()
    loss_input = {
        "chosen_reward": torch.randn(
            batch_size,
        ),
        "reject_reward": torch.randn(
            batch_size,
        ),
    }
    loss(**loss_input)


if __name__ == "__main__":
    generate_kwargs = dict(max_length=40, use_cache=True, do_sample=True, temperature=1.0, top_k=50)
    test_generation(lambda: LlamaActor(), batch_size=4, seq_len=32, generate_kwargs=generate_kwargs)

    test_utils()

    test_lora(lora_rank=2, num_dim=8, num_layers=2)

    test_models(models_maker=lambda: (BLOOMActor(), BLOOMCritic(), BLOOMRM()), batch_size=8, seq_len=128)

    test_loss(batch_size=8, seq_len=128, num_labels=100)