import torch import torch.nn as nn import torch.nn.functional as F from ..registry import model_zoo from .base import CheckpointModule class SubNet(nn.Module): def __init__(self, out_features) -> None: super().__init__() self.bias = nn.Parameter(torch.zeros(out_features)) def forward(self, x, weight): return F.linear(x, weight, self.bias) class NestedNet(CheckpointModule): def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint) self.fc1 = nn.Linear(5, 5) self.sub_fc = SubNet(5) self.fc2 = nn.Linear(5, 2) def forward(self, x): x = self.fc1(x) x = self.sub_fc(x, self.fc1.weight) x = self.fc1(x) x = self.fc2(x) return x def data_gen(): return dict(x=torch.rand(16, 5)) def loss_fn(x): outputs = x["x"] label = torch.randint(low=0, high=2, size=(16,), device=outputs.device) return F.cross_entropy(x["x"], label) def output_transform(x: torch.Tensor): return dict(x=x) model_zoo.register( name="custom_nested_model", model_fn=NestedNet, data_gen_fn=data_gen, output_transform_fn=output_transform, loss_fn=loss_fn, )