import torch from colossalai.utils.model.lazy_init_context import LazyInitContext from torchvision.models import resnet34 import random import numpy as np MANUAL_SEED = 0 random.seed(MANUAL_SEED) np.random.seed(MANUAL_SEED) torch.manual_seed(MANUAL_SEED) def test_lazy_init_with_meta(): ctx = LazyInitContext(to_meta=True) with ctx: model = resnet34(num_classes=10) for param in model.parameters(): assert param.is_meta for buffer in model.buffers(): assert buffer.is_meta ctx.lazy_init_parameters(model) for name, param in model.named_parameters(): assert not param.is_meta, name for buffer in model.buffers(): assert not buffer.is_meta def test_lazy_init_without_meta(): ctx = LazyInitContext(to_meta=False) with ctx: model = resnet34(num_classes=10) for param in model.parameters(): assert not param.is_meta for buffer in model.buffers(): assert not buffer.is_meta conv1_weight_before_init = model.conv1.weight.clone() ctx.lazy_init_parameters(model) conv1_weight_after_init = model.conv1.weight.clone() assert not torch.allclose(conv1_weight_after_init, conv1_weight_before_init) if __name__ == '__main__': test_lazy_init_with_meta() test_lazy_init_without_meta()