import operator from typing import Any, List, Union import torch from torch.fx.proxy import Attribute, Proxy from colossalai.fx.tracer.meta_patch import meta_patched_function __all__ = ['ColoProxy'] class ColoProxy(Proxy): """ ColoProxy is a proxy class which uses meta tensor to handle data-dependent control flow. The original torch.fx proxy cannot be used to infer the condition statement, with this proxy, torch.fx can still run even with if statements. Example:: proxy = tracer.create_proxy(...) proxy.meta_data = torch.empty(4, 2, device='meta') print(len(proxy)) # expect output 4 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.node._meta_data = None @property def meta_data(self): return self.node._meta_data @meta_data.setter def meta_data(self, data: Any): self.node._meta_data = data @property def has_meta_data(self): return self._meta_data is not None def _assert_meta_data_is_tensor(self): assert torch.is_tensor( self._meta_data) and self._meta_data.is_meta, f'Meta data is not a meta tensor for {self.node.name}' def _assert_has_meta_data(self): assert self._meta_data is not None, f'Meta data is not set for {self.node.name}' def __len__(self): self._assert_has_meta_data() return len(self.meta_data) def __int__(self): self._assert_has_meta_data() return int(self.meta_data) def __float__(self): self._assert_has_meta_data() return float(self.meta_data) def __bool__(self): self._assert_has_meta_data() return self.meta_data def __getattr__(self, k): return ColoAttribute(self, k) def __contains__(self, key): if self.node.op == "placeholder": # this is used to handle like # if x in kwargs # we don't handle this case for now return False return super().__contains__(key) def extract_meta(*args, **kwargs): """ This function is copied from _tracer_utils.py to avoid circular import issue. """ def _convert(val): if isinstance(val, ColoProxy): return val.meta_data elif isinstance(val, (list, tuple)): return type(val)([_convert(ele) for ele in val]) return val new_args = [_convert(val) for val in args] new_kwargs = {k: _convert(v) for k, v in kwargs.items()} return new_args, new_kwargs class ColoAttribute(ColoProxy): def __init__(self, root, attr: str): self.root = root self.attr = attr self.tracer = root.tracer self._node = None @property def node(self): if self._node is None: proxy = self.tracer.create_proxy("call_function", getattr, (self.root, self.attr), {}) if not isinstance(proxy, ColoProxy): meta_args, meta_kwargs = extract_meta(*(self.root, self.attr)) meta_out = getattr(*meta_args, **meta_kwargs) proxy = ColoProxy(proxy.node) proxy.meta_data = meta_out self._node = proxy.node return self._node def __call__(self, *args, **kwargs): proxy = self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs) if not isinstance(proxy, ColoProxy): meta_args, meta_kwargs = extract_meta(*((self.root,) + args), **kwargs) method = getattr(meta_args[0].__class__, self.attr) if meta_patched_function.has(method): meta_target = meta_patched_function.get(method) elif meta_patched_function.has(method.__name__): meta_target = meta_patched_function.get(method.__name__) else: meta_target = method meta_out = meta_target(*meta_args, **meta_kwargs) proxy = ColoProxy(proxy.node) proxy.meta_data = meta_out return proxy