import pytest import torch import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import LowLevelZeroPlugin from colossalai.moe.manager import MOE_MANAGER from colossalai.tensor.moe_tensor.api import is_moe_tensor from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.testing.random import seed_all from tests.test_moe.moe_utils import MoeModel, delete_moe_info, loose_close, run_fwd_bwd, sync_local_from_ep def run_zero_test(local_rank, stage=1): criterion = torch.nn.CrossEntropyLoss() MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel="EP") moe_model = MoeModel().bfloat16() moe_optimizer = torch.optim.Adam(moe_model.parameters(), lr=1.0) moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16") moe_booster = Booster(plugin=moe_plugin) moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer) MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel=None) zero_model = MoeModel().bfloat16() delete_moe_info(zero_model) sync_local_from_ep(zero_model, moe_model) zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1.0) zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16") zero_booster = Booster(plugin=zero_plugin) zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer) for (moe_name, moe_param), (zero_name, zero_param) in zip( moe_model.named_parameters(), zero_model.named_parameters() ): if ".experts." in moe_name: continue assert moe_name == zero_name assert torch.allclose( moe_param.data, zero_param.data ), f"{moe_name}\ntorch_param {moe_param.data}\nzero_param {zero_param.data}" for _ in range(1): data = torch.randn(2, 4).bfloat16().cuda() label = torch.randint(0, 4, (2,)).cuda() moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer) zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) assert torch.allclose(zero_out, moe_out) moe_optimizer.step() zero_optimizer.step() for (moe_name, moe_param), (zero_name, zero_param) in zip( moe_model.named_parameters(), zero_model.named_parameters() ): assert moe_name == zero_name if is_moe_tensor(moe_param): param_size = moe_param.shape[0] zero_param = zero_param[local_rank * param_size : (local_rank + 1) * param_size] loose_close(moe_param.data, zero_param.data, dtype=moe_param.dtype) moe_optimizer.zero_grad() zero_optimizer.zero_grad() def run_dist(rank, world_size, port, stage): colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") seed_all(42 + rank) run_zero_test(rank, stage=stage) @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @pytest.mark.parametrize("stage", [1, 2]) @rerun_if_address_is_in_use() def test_moe_zero_optim(world_size, stage): spawn(run_dist, world_size, stage=stage) if __name__ == "__main__": test_moe_zero_optim(world_size=2, stage=1)