import pytest import torch import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import LowLevelZeroPlugin from colossalai.moe.manager import MOE_MANAGER from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.testing.random import seed_all from tests.test_moe.moe_utils import MoeModel, delete_moe_info, run_fwd_bwd, sync_local_from_ep def run_zero_test(local_rank, stage=1): criterion = torch.nn.CrossEntropyLoss() MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel="EP") moe_model = MoeModel().bfloat16() moe_optimizer = torch.optim.Adam(moe_model.parameters()) moe_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16") moe_booster = Booster(plugin=moe_plugin) moe_model, moe_optimizer, _, _, _ = moe_booster.boost(moe_model, moe_optimizer) MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel=None) zero_model = MoeModel().bfloat16() delete_moe_info(zero_model) zero_optimizer = torch.optim.Adam(zero_model.parameters()) zero_plugin = LowLevelZeroPlugin(stage=stage, precision="bf16") zero_booster = Booster(plugin=zero_plugin) zero_model, zero_optimizer, _, _, _ = zero_booster.boost(zero_model, zero_optimizer) sync_local_from_ep(zero_model, moe_model) data = torch.randn(16, 4).bfloat16().cuda() label = torch.randint(0, 4, (16,)).cuda() zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) moe_out = run_fwd_bwd(moe_model, data, label, criterion, moe_optimizer) assert torch.allclose(zero_out, moe_out) for (moe_name, moe_param), (zero_name, zero_param) in zip( moe_model.module.named_parameters(), zero_model.module.named_parameters() ): assert moe_name == zero_name moe_grad_list = moe_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(moe_param)) zero_grad_list = zero_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param)) if hasattr(moe_param, "moe_info"): assert len(moe_grad_list) == 0 if stage == 1: zero_grad = zero_grad_list[local_rank].view(moe_param.grad.shape) else: zero_grad = zero_grad_list[0].view(moe_param.grad.shape) assert torch.allclose( moe_param.grad, zero_grad, atol=1e-5 ), f"zero grad:\n{moe_param.grad}\ntorch grad:\n{zero_grad}\nmax diff: {(moe_param.grad - zero_grad).abs().max()}, mean diff: {(moe_param.grad - zero_grad).abs().mean()}" else: assert len(moe_grad_list) > 0 assert len(moe_grad_list) == len(zero_grad_list) for moe_grad, zero_grad in zip(moe_grad_list, zero_grad_list): assert torch.allclose(moe_grad, zero_grad) def run_dist(rank, world_size, port, stage): colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") seed_all(42 + rank) run_zero_test(rank, stage=stage) @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @pytest.mark.parametrize("stage", [1, 2]) @rerun_if_address_is_in_use() def test_moe_zero_model(world_size, stage): spawn(run_dist, world_size, stage=stage) if __name__ == "__main__": test_moe_zero_model(world_size=2, stage=1)