import pytest import torch import torch.distributed as dist import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import LowLevelZeroPlugin from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel from colossalai.moe.layers import apply_load_balance from colossalai.moe.manager import MOE_MANAGER from colossalai.tensor.moe_tensor.api import is_moe_tensor from colossalai.testing import rerun_if_address_is_in_use, spawn from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel def split_ddp_grad(grad, world_size): with torch.no_grad(): grad = grad.clone().detach().flatten() padding_size = (world_size - grad.numel() % world_size) % world_size if padding_size > 0: grad = torch.nn.functional.pad(grad, [0, padding_size]) splited_grad = grad.split(grad.numel() // world_size) return splited_grad def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, LowLevelZeroModel): optimizer.backward(loss) else: loss.backward() return y def run_zero_optim_test(local_rank, world_size, stage=1): criterion = torch.nn.CrossEntropyLoss() MOE_MANAGER.__init__() MOE_MANAGER.setup( parallel="EP", ) zero_model = MoeModel(enable_load_balance=True) zero_optimizer = torch.optim.Adam(zero_model.parameters()) plugin = LowLevelZeroPlugin(stage=stage, precision="bf16", verbose=True) booster = Booster(plugin=plugin) zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer) MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel="EP") torch_model = MoeModel() for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): torch_param.data.copy_(zero_param.data) torch_optimizer = torch.optim.Adam(torch_model.parameters()) torch_model = torch_model.cuda().bfloat16() grad_handler = MoeGradientHandler(torch_model) # run to update expert load data = torch.randn(16, 4).cuda().bfloat16() / 1000 / (local_rank + 1) label = torch.randint(0, 4, (16,)).cuda() # run torch model twice run_fwd_bwd(torch_model, data, label, criterion, None) grad_handler.handle_gradient() torch_optimizer.step() torch_optimizer.zero_grad() run_fwd_bwd(torch_model, data, label, criterion, None) grad_handler.handle_gradient() # get optim and load status in zero model run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) zero_optimizer.step() zero_optimizer.zero_grad() with torch.no_grad(): origin_out = zero_model(data) # load balance apply_load_balance(zero_model, zero_optimizer) # run again to test zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) torch.allclose(origin_out, zero_out) # assert optim torch_optimizer.step() torch_out = run_fwd_bwd(torch_model, data, label, criterion, None) zero_optimizer.step() zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) assert torch.allclose(zero_out, torch_out, atol=3e-5), f"zero_out:{zero_out}\ntorch_out{torch_out}" def run_hybrid_zero_optim_test(local_rank, world_size, stage=1): criterion = torch.nn.CrossEntropyLoss() data = torch.randn(16, 4).cuda() label = torch.randint(0, 4, (16,)).cuda() MOE_MANAGER.__init__() MOE_MANAGER.setup(parallel=None) torch_model = MoeModel() torch_optimizer = torch.optim.Adam(torch_model.parameters()) torch_model = torch_model.cuda() MOE_MANAGER.__init__() MOE_MANAGER.setup( max_ep_size=2, use_ep_inside=False, parallel="EP", ) zero_model = MoeModel(enable_load_balance=True) extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group) ep_size = MOE_MANAGER.parallel_info_dict[2].ep_size for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): if is_moe_tensor(zero_param): num_expert = torch_param.data.shape[0] zero_param.data.copy_( torch_param.data[ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)] .detach() .clone() ) else: zero_param.data.copy_(torch_param.data.detach().clone()) zero_optimizer = torch.optim.Adam(zero_model.parameters()) plugin = LowLevelZeroPlugin(stage=stage, precision="fp32") plugin.zero_optim_kwargs["moe_extra_dp_process_group"] = extra_dp_group booster = Booster(plugin=plugin) zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer) # run torch for twice run_fwd_bwd(torch_model, data, label, criterion, None) torch_optimizer.step() torch_optimizer.zero_grad() run_fwd_bwd(torch_model, data, label, criterion, None) torch_optimizer.step() # run zero run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) zero_optimizer.step() zero_optimizer.zero_grad() with torch.no_grad(): origin_out = zero_model(data) # load balance apply_load_balance(zero_model, zero_optimizer) # assert out zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) torch.allclose(origin_out, zero_out) # assert optim zero_optimizer.step() zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) torch_out = run_fwd_bwd(torch_model, data, label, criterion, None) # TODO: high atol, check if bug exists assert torch.allclose(zero_out, torch_out, atol=8e-4), f"zero_out:{zero_out}\ntorch_out{torch_out}" def run_dist(rank, world_size, port): colossalai.launch( config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl", ) run_zero_optim_test(rank, world_size, stage=1) run_zero_optim_test(rank, world_size, stage=2) run_hybrid_zero_optim_test(rank, world_size, stage=1) run_hybrid_zero_optim_test(rank, world_size, stage=2) @pytest.mark.dist @pytest.mark.parametrize("world_size", [4]) @rerun_if_address_is_in_use() def test_moe_load_balance(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_moe_load_balance(world_size=4)