import os from pathlib import Path import pytest import torch import torch.nn as nn from torch.optim import Adam from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet18 import colossalai from colossalai.legacy.core import global_context as gpc from colossalai.legacy.utils import get_dataloader from colossalai.logging import get_dist_logger from colossalai.testing import rerun_if_address_is_in_use, spawn # Config BATCH_SIZE = 2 NUM_CLASSES = 10 CONFIG = dict( parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), clip_grad_norm=1.0, gradient_accumulation=4 ) def run_no_pipeline(rank, world_size, port): # init dist env colossalai.legacy.launch( config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl" ) # build model model = resnet18(num_classes=10) # build dataloaders train_dataset = CIFAR10( root=Path(os.environ["DATA"]), download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))] ), ) train_dataloader = get_dataloader( dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True ) # build optimizer optimizer = Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() engine, train_dataloader, *args = colossalai.legacy.initialize( model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader ) get_dist_logger() rank = torch.distributed.get_rank() param_track = [] grad_track = [] next(model.parameters()).retain_grad() engine.train() step = 0 for img, label in train_dataloader: engine.zero_grad() img = img.cuda() label = label.cuda() output = engine(img) loss = engine.criterion(output, label) engine.backward(loss) engine.step() # check param_track.append(next(model.parameters())[0].clone()) grad_track.append(next(model.parameters()).grad[0].clone()) step += 1 if step == CONFIG["gradient_accumulation"]: break assert not torch.all(grad_track[0] == grad_track[-1]), "grad should be different in different iterations" assert torch.all(param_track[0] == param_track[1]) and not torch.all( param_track[0] == param_track[-1] ), "param should be the same in the first few iterations and only changed in the last iteration" gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_engine(): spawn(run_no_pipeline, 4) if __name__ == "__main__": test_engine()