import importlib.util import pytest import torch import torch.distributed as dist import transformers from packaging import version import colossalai from colossalai.inference import InferenceEngine from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5") import importlib.util HAS_LIGHTLLM_KERNEL = True if importlib.util.find_spec("lightllm") is None: HAS_LIGHTLLM_KERNEL = False def data_gen(): input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) inputs = data_gen() for k, v in inputs.items(): if torch.is_tensor(v) or "Tensor" in v.__class__.__name__: new_shape = [1] * v.dim() new_shape[0] = 16 inputs[k] = v.to("cuda").repeat(*new_shape) def pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size): model = transformers.LlamaForCausalLM( transformers.LlamaConfig( vocab_size=20000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4 ) ) engine = InferenceEngine( tp_size=tp_size, pp_size=pp_size, model=model, max_output_len=max_output_len, micro_batch_size=micro_batch_size, ) output = engine.generate(inputs) if dist.get_rank() == 0: assert len(output[0]) == max_output_len, f"{len(output)}, {max_output_len}" @parameterize("tp_size", [1]) @parameterize("pp_size", [2]) @parameterize("max_output_len", [4]) @parameterize("micro_batch_size", [1]) @clear_cache_before_run() def run_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size): pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size) torch.cuda.empty_cache() @parameterize("tp_size", [2]) @parameterize("pp_size", [2]) @parameterize("max_output_len", [4]) @parameterize("micro_batch_size", [1]) @clear_cache_before_run() def run_tp_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size): pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size) torch.cuda.empty_cache() @parameterize("tp_size", [2]) @parameterize("pp_size", [1]) @parameterize("max_output_len", [2]) @parameterize("micro_batch_size", [1]) @clear_cache_before_run() def run_tp_inference_test(tp_size, pp_size, max_output_len, micro_batch_size): pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size) torch.cuda.empty_cache() @parameterize("tp_size", [1]) @parameterize("pp_size", [1]) @parameterize("max_output_len", [2]) @parameterize("micro_batch_size", [1]) @clear_cache_before_run() def run_single_inference_test(tp_size, pp_size, max_output_len, micro_batch_size): pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size) torch.cuda.empty_cache() def check_tp_pp_inference(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_tp_pipeline_inference_test() def check_tp_or_pp_inference(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_tp_inference_test() run_pipeline_inference_test() def check_single_inference(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_single_inference_test @pytest.mark.skipif( not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL, reason="kv-cache manager engine requires cuda version to be higher than 11.5", ) @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_pipeline_inference(): spawn(check_tp_pp_inference, nprocs=4) spawn(check_tp_or_pp_inference, nprocs=2) spawn(check_single_inference, nprocs=1) if __name__ == "__main__": test_pipeline_inference()