from contextlib import nullcontext from typing import Optional import torch import torch.distributed as dist import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import HybridParallelPlugin from colossalai.fx import is_compatible_with_meta from colossalai.lazy.lazy_init import LazyInitContext from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]: try: if init_method == "lazy": ctx = LazyInitContext() else: ctx = nullcontext() plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision="bf16") booster = Booster(plugin=plugin) with ctx: model = model_fn() optimizer = HybridAdam(model.parameters(), lr=1e-3) criterion = lambda x: x.mean() data = data_gen_fn() data = { k: v.to("cuda").repeat(4, 1) if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items() } model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) data_iter = iter([data]) def _criterion(outputs, inputs): outputs = output_transform_fn(outputs) output_key = list(outputs.keys())[0] loss = criterion(outputs[output_key]) return loss booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True, return_outputs=False) optimizer.step() except Exception as e: return repr(e) @parameterize("init_method", ["none", "lazy"]) def check_3d_plugin(init_method: str = "none", early_stop: bool = True): """check gemini plugin over model zoo Args: early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True. """ is_support_meta = is_compatible_with_meta() if not is_support_meta and init_method == "lazy": return passed_models = [] failed_info = {} # (model_name, error) pair # TODO(ver217): add more models for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry( "transformers_llama_for_casual_lm" ).items(): err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) torch.cuda.empty_cache() if err is None: passed_models.append(name) else: failed_info[name] = err if early_stop: break if dist.get_rank() == 0: print(f"Init method: {init_method}") print(f"Passed models({len(passed_models)}): {passed_models}\n\n") print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n") assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()]) def run_dist(rank, world_size, port, early_stop: bool = True): # init dist env colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost") check_3d_plugin(early_stop=early_stop) @rerun_if_address_is_in_use() def test_gemini_plugin(early_stop: bool = True): spawn(run_dist, 4, early_stop=early_stop) if __name__ == "__main__": test_gemini_plugin(early_stop=False)