from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer from colossalai.nn.parallel import ZeroDDP from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed def check_param(model: ZeroDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('model_name', ['gpt2']) def exam_inference(placement_policy, model_name: str): set_seed(19360226) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) init_dev = get_current_device() with ColoInitContext(device=init_dev): model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) world_size = torch.distributed.get_world_size() config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) train_dataloader = iter(train_dataloader) def train_iter(): input_ids, label = next(train_dataloader) input_ids, label = input_ids.cuda(), label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert_close(torch_loss, loss) zero_optim.step() torch_optim.step() check_param(model, torch_model) def inference_iter(): input_ids, label = next(train_dataloader) input_ids, label = input_ids.cuda(), label.cuda() with torch.no_grad(): torch_output = torch_model(input_ids) torch_loss = criterion(torch_output.float(), label) zero_output = model(input_ids) zero_loss = criterion(zero_output.float(), label) assert_close(torch_loss, zero_loss) train_iter() inference_iter() train_iter() def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_inference() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_inference(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_inference(1)