import torch from colossalai.inference.modeling.layers.attention import copy_to_cache from colossalai.kernel.kernel_loader import InferenceOpsLoader from colossalai.kernel.triton import copy_kv_to_blocked_cache from colossalai.utils import get_current_device from tests.test_infer.test_kernels.cuda.test_kv_cache_memcpy import prepare_data as prepare_data_new_kcache_layout from tests.test_infer.test_kernels.triton.test_kvcache_copy import prepare_data try: import triton # noqa except ImportError: print("please install triton from https://github.com/openai/triton") inference_ops = InferenceOpsLoader().load() HEAD_DIM = 128 BATCH = 16 BLOCK_SIZE = 32 SAME_LEN = True WARM_UPS = 10 REPS = 100 configs = [ triton.testing.Benchmark( x_names=["KV_SEQ_LEN"], x_vals=[2**i for i in range(8, 13)], line_arg="provider", line_vals=["torch_copy_func", "triton_copy_func", "triton_new_kcache_layout", "cuda_copy_func"], line_names=["torch_copy_func", "triton_copy_func", "triton_new_kcache_layout", "cuda_copy_func"], styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("green", "-")], ylabel="ms", plot_name=f"kvcache_copy_decoding_stage-batch-{BATCH}", args={"bsz": BATCH, "block_size": 16, "max_seq_len": 8192, "num_kv_heads": 16, "same_context_len": True}, ) ] @triton.testing.perf_report(configs) def benchmark_kvcache_copy( provider: str, bsz: int, block_size: int, max_seq_len: int, KV_SEQ_LEN: int, # maximum past kv length (unequal context lens in batch) or past kv len (equal context lens) num_kv_heads: int, same_context_len: bool, ): dtype = torch.float16 device = get_current_device() assert KV_SEQ_LEN <= max_seq_len, "Assigned maximum kv length must be smaller or equal to maximum seq len" new_k, new_v, k_cache, v_cache, context_lengths, block_tables = prepare_data( bsz, num_kv_heads, HEAD_DIM, block_size, max_seq_len // block_size, same_context_len, KV_SEQ_LEN, device=device, dtype=dtype, ) quantiles = [0.5, 0.2, 0.8] if provider == "torch_copy_func": fn = lambda: copy_to_cache(new_k, k_cache, lengths=context_lengths, block_tables=block_tables, type="decoding") elif provider == "triton_copy_func": fn = lambda: copy_kv_to_blocked_cache(new_k, new_v, k_cache, v_cache, context_lengths, block_tables) elif provider == "triton_new_kcache_layout": # NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x) to be applied x = 16 // torch.tensor([], dtype=dtype).element_size() k_cache_shape = (bsz * max_seq_len // block_size, num_kv_heads, HEAD_DIM // x, block_size, x) k_cache = torch.zeros(size=k_cache_shape, dtype=dtype, device=device) # update k_cache layout fn = lambda: copy_kv_to_blocked_cache( new_k, new_v, k_cache, v_cache, context_lengths, block_tables, use_new_kcache_layout=True ) elif provider == "cuda_copy_func": _, _, k_cache, _, _, _, _, _, _ = prepare_data_new_kcache_layout( bsz, num_kv_heads, block_size, max_seq_len // block_size, context_lengths - 1, device, dtype ) new_k = new_k.squeeze(1) if new_k.dim() == 4 else new_k new_v = new_v.squeeze(1) if new_v.dim() == 4 else new_v fn = lambda: inference_ops.decode_kv_cache_memcpy(new_k, new_v, k_cache, v_cache, context_lengths, block_tables) ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles) return ms, min_ms, max_ms if __name__ == "__main__": benchmark_kvcache_copy.run(save_path=".", print_data=True)