#!/bin/bash set_n_least_used_CUDA_VISIBLE_DEVICES() { local n=${1:-"9999"} echo "GPU Memory Usage:" local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | tail -n +2 | nl -v 0 | tee /dev/tty | sort -g -k 2 | awk '{print $1}' | head -n $n) export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') echo "Now CUDA_VISIBLE_DEVICES is set to:" echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" } set_n_least_used_CUDA_VISIBLE_DEVICES 4 PROJECT_NAME="simpo" PARENT_CONFIG_FILE="./benchmark_config" # Path to a folder to save training config logs PRETRAINED_MODEL_PATH="" # huggingface or local model path PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path BENCHMARK_DATA_DIR="./temp/simpo" # Path to benchmark data DATASET_SIZE=640 TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" declare -a dataset=( $BENCHMARK_DATA_DIR/arrow/part-0 ) # Generate dummy test data python prepare_dummy_test_dataset.py --data_dir $BENCHMARK_DATA_DIR --dataset_size $DATASET_SIZE --max_length 2048 --data_type preference colossalai run --nproc_per_node 4 --master_port 31313 ../examples/training_scripts/train_dpo.py \ --pretrain $PRETRAINED_MODEL_PATH \ --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ --dataset ${dataset[@]} \ --plugin "zero2_cpu" \ --loss_type "simpo_loss" \ --max_epochs 1 \ --accumulation_steps 1 \ --batch_size 8 \ --lr 1e-6 \ --beta 0.1 \ --gamma 0.6 \ --mixed_precision "bf16" \ --grad_clip 1.0 \ --max_length 2048 \ --weight_decay 0.01 \ --warmup_steps 60 \ --disable_reference_model \ --length_normalization \ --grad_checkpoint \ --use_flash_attn