mirror of https://github.com/hpcaitech/ColossalAI
Merge branch 'main' of github.com:hpcaitech/ColossalAI into prefetch
commit
ff507b755e
|
@ -362,6 +362,7 @@ class GeminiPlugin(DPPluginBase):
|
|||
enable_sequence_parallelism: bool = False,
|
||||
enable_jit_fused: bool = False,
|
||||
enable_sequence_overlap: bool = False,
|
||||
enable_async_reduce: bool = True,
|
||||
verbose: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
@ -388,6 +389,7 @@ class GeminiPlugin(DPPluginBase):
|
|||
mixed_precision=PRECISION_STR_TO_DTYPE[precision],
|
||||
master_weights=master_weights,
|
||||
max_prefetch=max_prefetch,
|
||||
enable_async_reduce=enable_async_reduce,
|
||||
)
|
||||
self.zero_optim_config = dict(
|
||||
gpu_margin_mem_ratio=gpu_margin_mem_ratio,
|
||||
|
|
|
@ -207,13 +207,13 @@ Learnt from [PagedAttention](https://arxiv.org/abs/2309.06180) by [vLLM](https:/
|
|||
Request handler is responsible for managing requests and scheduling a proper batch from exisiting requests. Based on [Orca's](https://www.usenix.org/conference/osdi22/presentation/yu) and [vLLM's](https://github.com/vllm-project/vllm) research and work on batching requests, we applied continuous batching with unpadded sequences, which enables various number of sequences to pass projections (i.e. Q, K, and V) together in different steps by hiding the dimension of number of sequences, and decrement the latency of incoming sequences by inserting a prefill batch during a decoding step and then decoding together.
|
||||
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/continuous_batching.png" width="800"/>
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/naive_batching.png" width="800"/>
|
||||
<br/>
|
||||
<em>Naive Batching: decode until each sequence encounters eos in a batch</em>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/naive_batching.png" width="800"/>
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/continuous_batching.png" width="800"/>
|
||||
<br/>
|
||||
<em>Continuous Batching: dynamically adjust the batch size by popping out finished sequences and inserting prefill batch</em>
|
||||
</p>
|
||||
|
@ -222,6 +222,54 @@ Request handler is responsible for managing requests and scheduling a proper bat
|
|||
|
||||
Modeling contains models, layers, and policy, which are hand-crafted for better performance easier usage. Integrated with `shardformer`, users can define their own policy or use our preset policies for specific models. Our modeling files are aligned with [Transformers](https://github.com/huggingface/transformers). For more details about the usage of modeling and policy, please check `colossalai/shardformer`.
|
||||
|
||||
## Online Service
|
||||
Colossal-Inference supports fast-api based online service. Simple completion and chat are both supported. Follow the commands below and you can simply construct a server with both completion and chat functionalities. For now we support `Llama2`,`Llama3` and `Baichuan2` model, etc. we will fullfill the blank quickly.
|
||||
|
||||
### API
|
||||
|
||||
- GET '/ping':
|
||||
Ping is used to check if the server can receive and send information.
|
||||
- GET '/engine_check':
|
||||
Check is the background engine is working.
|
||||
- POST '/completion':
|
||||
Completion api is used for single sequence request, like answer a question or complete words.
|
||||
- POST '/chat':
|
||||
Chat api is used for conversation-style request, which often includes dialogue participants(i.e. roles) and corresponding words. Considering the input data are very different from normal inputs, we introduce Chat-Template to match the data format in chat models.
|
||||
#### chat-template
|
||||
Followed `transformers`, we add the chat-template argument. As chat models have been trained with very different formats for converting conversations into a single tokenizable string. Using a format that matches the training data is extremely important. This attribute(chat_template) is inclueded in HuggingFace tokenizers, containing a Jinja template that converts conversation histories into a correctly formatted string. You can refer to the [HuggingFace-blog](https://huggingface.co/blog/chat-templates) for more information. We also provide a simple example temlate bellow. Both str or file style chat template are supported.
|
||||
### Usage
|
||||
#### Args for customizing your server
|
||||
The configuration for api server contains both serving interface and engine backend.
|
||||
For Interface:
|
||||
- `--host`: The host url on your device for the server.
|
||||
- `--port`: The port for service
|
||||
- `--model`: The model that backend engine uses, both path and transformers model card are supported.
|
||||
- `--chat-template` The file path of chat template or the template string.
|
||||
- `--response-role` The role that colossal-inference plays.
|
||||
For Engine Backend:
|
||||
- `--block_size`: The memory usage for each block.
|
||||
- `--max_batch_size`: The max batch size for engine to infer. This changes the speed of inference,
|
||||
- `--max_input_len`: The max input length of a request.
|
||||
- `--max_output_len`: The output length of response.
|
||||
- `--dtype` and `--use_cuda_kernel`: Deciding the precision and kernel usage.
|
||||
For more detailed arguments, please refer to source code.
|
||||
|
||||
### Examples
|
||||
```bash
|
||||
# First, Lauch an API locally.
|
||||
python3 -m colossalai.inference.server.api_server --model path of your model --chat-template "{% for message in messages %}{{'<|im_start|>'+message['role']+'\n'+message['content']+'<|im_end|>'+'\n'}}{% endfor %}"
|
||||
|
||||
# Second, you can turn to the page `http://127.0.0.1:8000/docs` to check the api
|
||||
|
||||
# For completion service, you can invoke it
|
||||
curl -X POST http://127.0.0.1:8000/completion -H 'Content-Type: application/json' -d '{"prompt":"hello, who are you? "}'
|
||||
|
||||
# For chat service, you can invoke it
|
||||
curl -X POST http://127.0.0.1:8000/chat -H 'Content-Type: application/json' -d '{"messages":[{"role":"system","content":"you are a helpful assistant"},{"role":"user","content":"what is 1+1?"}]}'
|
||||
|
||||
# You can check the engine status now
|
||||
curl http://localhost:8000/engine_check
|
||||
```
|
||||
|
||||
## 🌟 Acknowledgement
|
||||
|
||||
|
@ -229,7 +277,7 @@ This project was written from scratch but we learned a lot from several other gr
|
|||
|
||||
- [vLLM](https://github.com/vllm-project/vllm)
|
||||
- [flash-attention](https://github.com/Dao-AILab/flash-attention)
|
||||
|
||||
- [HuggingFace](https://huggingface.co)
|
||||
If you wish to cite relevant research papars, you can find the reference below.
|
||||
|
||||
```bibtex
|
||||
|
|
|
@ -1,27 +0,0 @@
|
|||
# Online Service
|
||||
Colossal-Inference supports fast-api based online service. Simple completion and chat are both supported. Follow the commands below and
|
||||
you can simply construct a server with both completion and chat functionalities. For now we only support `Llama` model, we will fullfill
|
||||
the blank quickly.
|
||||
|
||||
# Usage
|
||||
```bash
|
||||
# First, Lauch an API locally.
|
||||
python3 -m colossalai.inference.server.api_server --model path of your llama2 model --chat_template "{% for message in messages %}
|
||||
{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}"
|
||||
|
||||
|
||||
# Second, you can turn to the page `http://127.0.0.1:8000/docs` to check the api
|
||||
|
||||
# For completion service, you can invoke it
|
||||
curl -X POST http://127.0.0.1:8000/completion -H 'Content-Type: application/json' -d '{"prompt":"hello, who are you? ","stream":"False"}'
|
||||
|
||||
# For chat service, you can invoke it
|
||||
curl -X POST http://127.0.0.1:8000/completion -H 'Content-Type: application/json' -d '{"converation":
|
||||
[{"role": "system", "content": "you are a helpful assistant"},
|
||||
{"role": "user", "content": "what is 1+1?"},],
|
||||
"stream": "False",}'
|
||||
# If you just want to test a simple generation, turn to generate api
|
||||
curl -X POST http://127.0.0.1:8000/generate -H 'Content-Type: application/json' -d '{"prompt":"hello, who are you? ","stream":"False"}'
|
||||
|
||||
```
|
||||
We also support streaming output, simply change the `stream` to `True` in the request body.
|
|
@ -30,7 +30,6 @@ from colossalai.inference.utils import find_available_ports
|
|||
from colossalai.inference.core.async_engine import AsyncInferenceEngine, InferenceEngine # noqa
|
||||
|
||||
TIMEOUT_KEEP_ALIVE = 5 # seconds.
|
||||
supported_models_dict = {"Llama_Models": ("llama2-7b",)}
|
||||
prompt_template_choices = ["llama", "vicuna"]
|
||||
async_engine = None
|
||||
chat_serving = None
|
||||
|
@ -39,15 +38,25 @@ completion_serving = None
|
|||
app = FastAPI()
|
||||
|
||||
|
||||
# NOTE: (CjhHa1) models are still under development, need to be updated
|
||||
@app.get("/models")
|
||||
def get_available_models() -> Response:
|
||||
return JSONResponse(supported_models_dict)
|
||||
@app.get("/ping")
|
||||
def health_check() -> JSONResponse:
|
||||
"""Health Check for server."""
|
||||
return JSONResponse({"status": "Healthy"})
|
||||
|
||||
|
||||
@app.get("/engine_check")
|
||||
def engine_check() -> bool:
|
||||
"""Check if the background loop is running."""
|
||||
loop_status = async_engine.background_loop_status
|
||||
if loop_status == False:
|
||||
return JSONResponse({"status": "Error"})
|
||||
return JSONResponse({"status": "Running"})
|
||||
|
||||
|
||||
@app.post("/generate")
|
||||
async def generate(request: Request) -> Response:
|
||||
"""Generate completion for the request.
|
||||
NOTE: THIS API IS USED ONLY FOR TESTING, DO NOT USE THIS IF YOU ARE IN ACTUAL APPLICATION.
|
||||
|
||||
A request should be a JSON object with the following fields:
|
||||
- prompts: the prompts to use for the generation.
|
||||
|
@ -133,7 +142,7 @@ def add_engine_config(parser):
|
|||
# Parallel arguments not supported now
|
||||
|
||||
# KV cache arguments
|
||||
parser.add_argument("--block-size", type=int, default=16, choices=[8, 16, 32], help="token block size")
|
||||
parser.add_argument("--block_size", type=int, default=16, choices=[16, 32], help="token block size")
|
||||
|
||||
parser.add_argument("--max_batch_size", type=int, default=8, help="maximum number of batch size")
|
||||
|
||||
|
|
|
@ -164,6 +164,8 @@ class Chunk:
|
|||
self.l2_norm = None
|
||||
|
||||
self.grad_chunk = None
|
||||
# the async all-reduce/reduce-scatter work of this grad chunk (None means sync)
|
||||
self.grad_reduce_work = None
|
||||
|
||||
@property
|
||||
def memory_usage(self) -> Dict[str, int]:
|
||||
|
@ -244,7 +246,7 @@ class Chunk:
|
|||
assert self.cuda_shard is not None # only check on CUDA
|
||||
valid_tensor = self.cuda_shard[: self.valid_end]
|
||||
|
||||
return torch.isinf(valid_tensor).any().item() | torch.isnan(valid_tensor).any().item()
|
||||
return torch.isinf(valid_tensor).any() | torch.isnan(valid_tensor).any()
|
||||
|
||||
def set_l2_norm(self) -> None:
|
||||
"""Record l2 norm of this chunks on CUDA."""
|
||||
|
@ -375,37 +377,49 @@ class Chunk:
|
|||
if self.is_gathered:
|
||||
self.__scatter()
|
||||
|
||||
def reduce(self):
|
||||
def reduce(self, async_op: bool = False):
|
||||
"""Reduce scatter all the gradients. It's an operation done in CUDA."""
|
||||
# sanity check
|
||||
assert self.is_gathered
|
||||
|
||||
assert self.grad_reduce_work is None
|
||||
if self.pg_size == 1:
|
||||
# tricky code here
|
||||
# just move cuda_global_chunk to cuda_shard
|
||||
# the communication is not necessary
|
||||
self.__scatter()
|
||||
if self.extra_dp_group is not None:
|
||||
dist.all_reduce(self.cuda_shard, group=self.extra_dp_group)
|
||||
self.grad_reduce_work = dist.all_reduce(self.cuda_shard, group=self.extra_dp_group, async_op=async_op)
|
||||
elif self.keep_gathered:
|
||||
# we use all-reduce here
|
||||
dist.all_reduce(self.cuda_global_chunk, group=self.torch_pg)
|
||||
if self.extra_dp_group is not None:
|
||||
dist.all_reduce(self.cuda_global_chunk, group=self.extra_dp_group)
|
||||
self.grad_reduce_work = dist.all_reduce(self.cuda_global_chunk, group=self.torch_pg, async_op=async_op)
|
||||
if self.extra_dp_group is not None: # cannot guranatee the order of multiple all-reduce
|
||||
self.wait_async_reduce()
|
||||
self.grad_reduce_work = dist.all_reduce(
|
||||
self.cuda_global_chunk, group=self.extra_dp_group, async_op=async_op
|
||||
)
|
||||
else:
|
||||
self.cuda_shard = torch.empty(
|
||||
self.shard_size, dtype=self.dtype, device=get_accelerator().get_current_device()
|
||||
)
|
||||
|
||||
input_list = list(torch.chunk(self.cuda_global_chunk, chunks=self.pg_size, dim=0))
|
||||
dist.reduce_scatter(self.cuda_shard, input_list, group=self.torch_pg)
|
||||
self.grad_reduce_work = dist.reduce_scatter(
|
||||
self.cuda_shard, input_list, group=self.torch_pg, async_op=async_op
|
||||
)
|
||||
|
||||
if self.extra_dp_group is not None:
|
||||
dist.all_reduce(self.cuda_shard, group=self.extra_dp_group)
|
||||
self.wait_async_reduce()
|
||||
self.grad_reduce_work = dist.all_reduce(self.cuda_shard, group=self.extra_dp_group, async_op=async_op)
|
||||
|
||||
free_storage(self.cuda_global_chunk)
|
||||
self.is_gathered = False
|
||||
self.__update_tensors_state(TensorState.HOLD)
|
||||
|
||||
def wait_async_reduce(self) -> None:
|
||||
if self.grad_reduce_work is not None:
|
||||
self.grad_reduce_work.wait()
|
||||
self.grad_reduce_work = None
|
||||
|
||||
def tensor_trans_state(self, tensor: torch.Tensor, tensor_state: TensorState) -> None:
|
||||
"""
|
||||
Make a transition of the tensor into the next state.
|
||||
|
|
|
@ -41,7 +41,7 @@ class ChunkManager:
|
|||
self.reuse_fp16_chunk = reuse_fp16_chunk
|
||||
# Whether model is accumulating gradients,
|
||||
self.accumulating_grads = False
|
||||
self.overflow_counter = 0
|
||||
self.overflow_counter = torch.tensor([0], dtype=torch.int, device=get_accelerator().get_current_device())
|
||||
|
||||
def register_tensor(
|
||||
self,
|
||||
|
@ -144,12 +144,12 @@ class ChunkManager:
|
|||
chunk = self.tensor_chunk_map[tensor]
|
||||
chunk.tensor_trans_state(tensor, state)
|
||||
|
||||
def reduce_chunk(self, chunk: Chunk) -> bool:
|
||||
def reduce_chunk(self, chunk: Chunk, async_op: bool = False) -> bool:
|
||||
"""Reduce or all reduce the chunk."""
|
||||
if not chunk.can_reduce:
|
||||
return False
|
||||
self.__sub_memory_usage(chunk.memory_usage)
|
||||
chunk.reduce()
|
||||
chunk.reduce(async_op=async_op)
|
||||
self.__sub_accessed_chunk(chunk)
|
||||
self.__add_memory_usage(chunk.memory_usage)
|
||||
return True
|
||||
|
@ -274,7 +274,7 @@ class ChunkManager:
|
|||
return grad_chunk
|
||||
|
||||
def rearrange_accumulated_grad_chunk(self, chunk: Chunk) -> Chunk:
|
||||
"""Rearrange gradients accumulated in chunk.grad_chunk, and getP prepared for gradient reduction."""
|
||||
"""Rearrange gradients accumulated in chunk.grad_chunk, and get prepared for gradient reduction."""
|
||||
|
||||
assert chunk.grad_chunk is not None
|
||||
|
||||
|
|
|
@ -97,6 +97,7 @@ class GeminiDDP(ModelWrapper):
|
|||
master_weights: bool = True,
|
||||
extra_dp_group: Optional[ProcessGroup] = None,
|
||||
verbose: bool = False,
|
||||
enable_async_reduce: bool = True,
|
||||
) -> None:
|
||||
assert mixed_precision in (torch.float16, torch.bfloat16)
|
||||
reuse_fp16_chunk = master_weights if not enable_gradient_accumulation else False
|
||||
|
@ -180,6 +181,7 @@ class GeminiDDP(ModelWrapper):
|
|||
if is_ddp_ignored(p):
|
||||
continue
|
||||
if p.requires_grad:
|
||||
assert not hasattr(p, "_grad_handle")
|
||||
p._grad_handle = p.register_hook(
|
||||
partial(
|
||||
GeminiDDP.grad_handle,
|
||||
|
@ -189,6 +191,7 @@ class GeminiDDP(ModelWrapper):
|
|||
master_weights=self.master_weights,
|
||||
enable_gradient_accumulation=self.enable_gradient_accumulation,
|
||||
p=p,
|
||||
async_reduce=enable_async_reduce,
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -336,6 +339,11 @@ class GeminiDDP(ModelWrapper):
|
|||
setattr(param, "_gemini_reduced", False)
|
||||
|
||||
def _post_backward(self):
|
||||
for param in self.param2name:
|
||||
if hasattr(param, "_release_grad_chunk_cb"):
|
||||
param._release_grad_chunk_cb()
|
||||
delattr(param, "_release_grad_chunk_cb")
|
||||
|
||||
if self.chunk_manager.accessed_mem != 0:
|
||||
error_params = ["Reduction failed at followed parameters:"]
|
||||
for param in self.param2name:
|
||||
|
@ -373,6 +381,7 @@ class GeminiDDP(ModelWrapper):
|
|||
master_weights: bool,
|
||||
enable_gradient_accumulation: bool,
|
||||
p: nn.Parameter,
|
||||
async_reduce: bool,
|
||||
):
|
||||
setattr(p, "_gemini_reduced", True)
|
||||
empty_grad = torch.empty_like(grad)
|
||||
|
@ -408,31 +417,57 @@ class GeminiDDP(ModelWrapper):
|
|||
grad_chunk.copy_tensor_to_chunk_slice(p, grad, update_ptr=chunk_manager.reuse_fp16_chunk)
|
||||
else:
|
||||
grad_chunk.add_tensor_to_chunk_slice(p, grad)
|
||||
reduced = chunk_manager.reduce_chunk(grad_chunk)
|
||||
if reduced:
|
||||
if not chunk_manager.reuse_fp16_chunk:
|
||||
if chunk.keep_gathered:
|
||||
chunk_manager.fake_release_chunk(chunk)
|
||||
else:
|
||||
chunk_manager.release_chunk(chunk)
|
||||
if grad_chunk.is_gathered:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
|
||||
reduced = chunk_manager.reduce_chunk(grad_chunk, async_op=async_reduce)
|
||||
if reduced: # if not async, can release immediately, else release in when work finished
|
||||
if async_reduce:
|
||||
# dirty fix by installing callback
|
||||
assert not hasattr(p, "_release_grad_chunk_cb")
|
||||
|
||||
def _release_grad_chunk_cb():
|
||||
grad_chunk.wait_async_reduce()
|
||||
GeminiDDP.release_grad_chunk_handle(
|
||||
chunk_manager,
|
||||
grads_device,
|
||||
master_weights,
|
||||
enable_gradient_accumulation,
|
||||
p,
|
||||
chunk,
|
||||
grad_chunk,
|
||||
)
|
||||
|
||||
p._release_grad_chunk_cb = _release_grad_chunk_cb
|
||||
else:
|
||||
grad_chunk.cuda_shard.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
|
||||
# check overflow elements
|
||||
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
|
||||
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
|
||||
if chunk.l2_norm_flag:
|
||||
grad_chunk.set_l2_norm()
|
||||
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
|
||||
if not (master_weights) or (enable_gradient_accumulation):
|
||||
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
|
||||
GeminiDDP.release_grad_chunk_handle(
|
||||
chunk_manager, grads_device, master_weights, enable_gradient_accumulation, p, chunk, grad_chunk
|
||||
)
|
||||
return empty_grad
|
||||
|
||||
@staticmethod
|
||||
def release_grad_chunk_handle(
|
||||
chunk_manager, grads_device, master_weights, enable_gradient_accumulation, p, chunk, grad_chunk
|
||||
):
|
||||
if not chunk_manager.reuse_fp16_chunk:
|
||||
if chunk.keep_gathered:
|
||||
chunk_manager.fake_release_chunk(chunk)
|
||||
else:
|
||||
chunk_manager.release_chunk(chunk)
|
||||
if grad_chunk.is_gathered:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
|
||||
else:
|
||||
grad_chunk.cuda_shard.div_(chunk.pg_size)
|
||||
if chunk.extra_dp_group is not None:
|
||||
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
|
||||
# check overflow elements
|
||||
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
|
||||
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
|
||||
if chunk.l2_norm_flag:
|
||||
grad_chunk.set_l2_norm()
|
||||
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
|
||||
if not (master_weights) or (enable_gradient_accumulation):
|
||||
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
|
||||
|
||||
def zero_grad(self, set_to_none: bool = False) -> None:
|
||||
self.module.zero_grad(set_to_none=True)
|
||||
|
||||
|
|
|
@ -62,10 +62,10 @@ class GeminiFP16MixedPrecisionMixin(FP16MixedPrecisionMixin):
|
|||
self.module = module
|
||||
|
||||
def check_local_overflow(self) -> bool:
|
||||
return self.module.chunk_manager.overflow_counter > 0
|
||||
return self.module.chunk_manager.overflow_counter.item() > 0
|
||||
|
||||
def pre_zero_grad(self) -> None:
|
||||
self.module.chunk_manager.overflow_counter = 0
|
||||
self.module.chunk_manager.overflow_counter.zero_()
|
||||
|
||||
|
||||
class GeminiOptimizer(OptimizerWrapper):
|
||||
|
|
|
@ -20,7 +20,7 @@ class QuickstartUser(HttpUser):
|
|||
self.client.post(
|
||||
"/chat",
|
||||
json={
|
||||
"converation": [
|
||||
"messages": [
|
||||
{"role": "system", "content": "you are a helpful assistant"},
|
||||
{"role": "user", "content": "what is 1+1?"},
|
||||
],
|
||||
|
@ -34,7 +34,7 @@ class QuickstartUser(HttpUser):
|
|||
self.client.post(
|
||||
"/chat",
|
||||
json={
|
||||
"converation": [
|
||||
"messages": [
|
||||
{"role": "system", "content": "you are a helpful assistant"},
|
||||
{"role": "user", "content": "what is 1+1?"},
|
||||
],
|
||||
|
@ -42,6 +42,7 @@ class QuickstartUser(HttpUser):
|
|||
},
|
||||
)
|
||||
|
||||
# offline-generation is only for showing the usage, it will never be used in actual serving.
|
||||
@tag("offline-generation")
|
||||
@task(5)
|
||||
def generate_streaming(self):
|
||||
|
@ -54,5 +55,5 @@ class QuickstartUser(HttpUser):
|
|||
|
||||
@tag("online-generation", "offline-generation")
|
||||
@task
|
||||
def get_models(self):
|
||||
self.client.get("/models")
|
||||
def health_check(self):
|
||||
self.client.get("/ping")
|
||||
|
|
|
@ -78,6 +78,8 @@ def main():
|
|||
parser.add_argument("--zero", type=int, default=0, help="Zero Stage when hybrid plugin is enabled")
|
||||
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False)
|
||||
parser.add_argument("--profile", action="store_true", help="Enable profiling", default=False)
|
||||
parser.add_argument("--disable-async-reduce", action="store_true", help="Customize checkpoint", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
colossalai.launch_from_torch()
|
||||
|
@ -113,6 +115,7 @@ def main():
|
|||
enable_fused_normalization=torch.cuda.is_available(),
|
||||
enable_flash_attention=args.xformers,
|
||||
max_prefetch=10,
|
||||
enable_async_reduce=not args.disable_async_reduce,
|
||||
)
|
||||
elif args.plugin == "gemini_auto":
|
||||
plugin = GeminiPlugin(
|
||||
|
|
|
@ -20,4 +20,6 @@ transformers==4.36.2
|
|||
peft>=0.7.1
|
||||
bitsandbytes>=0.39.0
|
||||
rpyc==6.0.0
|
||||
fastapi
|
||||
uvicorn==0.29.0
|
||||
galore_torch
|
||||
|
|
|
@ -34,7 +34,8 @@ def check_equal(param, param_cp):
|
|||
@parameterize("init_device", [None, torch.device("cpu")])
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("pin_memory", [True, False])
|
||||
def exam_chunk_basic(init_device, keep_gathered, pin_memory):
|
||||
@parameterize("async_op", [True, False])
|
||||
def exam_chunk_basic(init_device, keep_gathered, pin_memory, async_op):
|
||||
world_size = torch.distributed.get_world_size()
|
||||
pg = _get_default_group()
|
||||
my_chunk = Chunk(
|
||||
|
@ -94,9 +95,12 @@ def exam_chunk_basic(init_device, keep_gathered, pin_memory):
|
|||
|
||||
assert my_chunk.tensor_state_cnter[TensorState.READY_FOR_REDUCE] == 4
|
||||
assert my_chunk.can_reduce
|
||||
my_chunk.reduce()
|
||||
my_chunk.reduce(async_op)
|
||||
assert my_chunk.tensor_state_cnter[TensorState.HOLD] == 4
|
||||
|
||||
if async_op:
|
||||
my_chunk.wait_async_reduce()
|
||||
|
||||
if keep_gathered is False:
|
||||
assert my_chunk.cuda_shard.size(0) == 1024 // world_size
|
||||
assert my_chunk.device_type == "cuda"
|
||||
|
|
|
@ -41,6 +41,7 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
|||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
@parameterize("master_weights", [False, True])
|
||||
@parameterize("max_prefetch", [0, 1, 4])
|
||||
@parameterize("enable_async_reduce", [False, True])
|
||||
def exam_gpt_fwd_bwd(
|
||||
placement_config,
|
||||
keep_gather,
|
||||
|
@ -48,6 +49,7 @@ def exam_gpt_fwd_bwd(
|
|||
use_grad_checkpoint: bool = False,
|
||||
master_weights: bool = True,
|
||||
max_prefetch: int = 0,
|
||||
enable_async_reduce=True,
|
||||
):
|
||||
init_device = get_accelerator().get_current_device()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
|
@ -78,6 +80,7 @@ def exam_gpt_fwd_bwd(
|
|||
**placement_config,
|
||||
master_weights=master_weights,
|
||||
max_prefetch=max_prefetch,
|
||||
enable_async_reduce=enable_async_reduce,
|
||||
)
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1)
|
||||
|
|
|
@ -51,6 +51,7 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
|||
@parameterize("master_weights", [False, True])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
@parameterize("max_prefetch", [0, 1, 4])
|
||||
@parameterize("enable_async_reduce", [False, True])
|
||||
def exam_gemini_grad_acc(
|
||||
placement_config,
|
||||
keep_gathered: bool,
|
||||
|
@ -58,6 +59,7 @@ def exam_gemini_grad_acc(
|
|||
master_weights: bool,
|
||||
use_grad_checkpoint: bool,
|
||||
max_prefetch: int,
|
||||
enable_async_reduce: bool,
|
||||
):
|
||||
init_device = get_accelerator().get_current_device()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
|
@ -88,10 +90,13 @@ def exam_gemini_grad_acc(
|
|||
enable_gradient_accumulation=True,
|
||||
master_weights=master_weights,
|
||||
max_prefetch=max_prefetch,
|
||||
enable_async_reduce=enable_async_reduce,
|
||||
**placement_config,
|
||||
)
|
||||
optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3)
|
||||
gemini_optim = GeminiOptimizer(optimizer, gemini_model, initial_scale=1, max_norm=1.0)
|
||||
gemini_optim = GeminiOptimizer(
|
||||
optimizer, gemini_model, initial_scale=1, max_norm=1.0, enable_async_reduce=enable_async_reduce
|
||||
)
|
||||
|
||||
rank = dist.get_rank()
|
||||
|
||||
|
|
|
@ -53,7 +53,10 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
|||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("master_weights", [True, False])
|
||||
@parameterize("max_prefetch", [0, 1, 4])
|
||||
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool, max_prefetch: int):
|
||||
@parameterize("enable_async_reduce", [False, True])
|
||||
def exam_grad_clipping(
|
||||
placement_config, model_name: str, master_weights: bool, max_prefetch: int, enable_async_reduce: bool
|
||||
):
|
||||
set_seed(1912)
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
|
@ -86,6 +89,7 @@ def exam_grad_clipping(placement_config, model_name: str, master_weights: bool,
|
|||
pin_memory=True,
|
||||
master_weights=master_weights,
|
||||
max_prefetch=max_prefetch,
|
||||
enable_async_reduce=enable_async_reduce,
|
||||
**placement_config,
|
||||
)
|
||||
|
||||
|
|
|
@ -72,8 +72,14 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
|
|||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
@parameterize("master_weights", [True, False])
|
||||
@parameterize("max_prefetch", [0, 1, 4])
|
||||
@parameterize("enable_async_reduce", [False, True])
|
||||
def exam_model_step(
|
||||
placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool, max_prefetch: int
|
||||
placement_config,
|
||||
model_name: str,
|
||||
mixed_precision: torch.dtype,
|
||||
master_weights: bool,
|
||||
max_prefetch: int,
|
||||
enable_async_reduce=True,
|
||||
):
|
||||
set_seed(42)
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
|
@ -103,6 +109,7 @@ def exam_model_step(
|
|||
mixed_precision=mixed_precision,
|
||||
master_weights=master_weights,
|
||||
max_prefetch=max_prefetch,
|
||||
enable_async_reduce=enable_async_reduce,
|
||||
)
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
|
|
Loading…
Reference in New Issue