mirror of https://github.com/hpcaitech/ColossalAI
[tutorial] added synthetic data for hybrid parallel (#1921)
* [tutorial] added synthetic data for hybrid parallel * polish codepull/1922/head
parent
3c42fdbedc
commit
ff16773ded
|
@ -1,16 +1,17 @@
|
|||
# Handson 1: Multi-dimensional Parallelism with Colossal-AI
|
||||
|
||||
|
||||
## Install Colossal-AI and other dependencies
|
||||
## Install Titans Model Zoo
|
||||
|
||||
```bash
|
||||
sh install.sh
|
||||
pip install titans
|
||||
```
|
||||
|
||||
|
||||
## Prepare Dataset
|
||||
|
||||
We use CIFAR10 dataset in this example. The dataset will be downloaded to `../data` by default.
|
||||
We use CIFAR10 dataset in this example. You should invoke the `donwload_cifar10.py` in the tutorial root directory or directly run the `auto_parallel_with_resnet.py`.
|
||||
The dataset will be downloaded to `colossalai/examples/tutorials/data` by default.
|
||||
If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command.
|
||||
|
||||
```bash
|
||||
|
@ -23,5 +24,9 @@ export DATA=/path/to/data
|
|||
Current configuration setting on `config.py` is TP=2, PP=2.
|
||||
|
||||
```bash
|
||||
# train with cifar10
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py
|
||||
```
|
||||
|
||||
# train with synthetic data
|
||||
colossalai run --nproc_per_node 4 train.py --config config.py
|
||||
```
|
||||
|
|
|
@ -1,4 +0,0 @@
|
|||
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
pip install colossalai==0.1.10+torch1.12cu11.3 -f https://release.colossalai.org
|
||||
pip install titans
|
||||
colossalai check -i
|
|
@ -1,116 +1,145 @@
|
|||
import os
|
||||
import colossalai
|
||||
import torch
|
||||
|
||||
from tqdm import tqdm
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn import CrossEntropyLoss
|
||||
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||
from colossalai.utils import is_using_pp, get_dataloader
|
||||
from colossalai.pipeline.pipelinable import PipelinableContext
|
||||
from titans.model.vit.vit import _create_vit_model
|
||||
from titans.dataloader.cifar10 import build_cifar
|
||||
|
||||
|
||||
def main():
|
||||
# initialize distributed setting
|
||||
parser = colossalai.get_default_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
# launch from torch
|
||||
colossalai.launch_from_torch(config=args.config)
|
||||
|
||||
# get logger
|
||||
logger = get_dist_logger()
|
||||
logger.info("initialized distributed environment", ranks=[0])
|
||||
|
||||
if hasattr(gpc.config, 'LOG_PATH'):
|
||||
if gpc.get_global_rank() == 0:
|
||||
log_path = gpc.config.LOG_PATH
|
||||
if not os.path.exists(log_path):
|
||||
os.mkdir(log_path)
|
||||
logger.log_to_file(log_path)
|
||||
|
||||
use_pipeline = is_using_pp()
|
||||
|
||||
# create model
|
||||
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
|
||||
patch_size=gpc.config.PATCH_SIZE,
|
||||
hidden_size=gpc.config.HIDDEN_SIZE,
|
||||
depth=gpc.config.DEPTH,
|
||||
num_heads=gpc.config.NUM_HEADS,
|
||||
mlp_ratio=gpc.config.MLP_RATIO,
|
||||
num_classes=10,
|
||||
init_method='jax',
|
||||
checkpoint=gpc.config.CHECKPOINT)
|
||||
|
||||
if use_pipeline:
|
||||
pipelinable = PipelinableContext()
|
||||
with pipelinable:
|
||||
model = _create_vit_model(**model_kwargs)
|
||||
pipelinable.to_layer_list()
|
||||
pipelinable.policy = "uniform"
|
||||
model = pipelinable.partition(
|
||||
1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
|
||||
else:
|
||||
model = _create_vit_model(**model_kwargs)
|
||||
|
||||
# count number of parameters
|
||||
total_numel = 0
|
||||
for p in model.parameters():
|
||||
total_numel += p.numel()
|
||||
if not gpc.is_initialized(ParallelMode.PIPELINE):
|
||||
pipeline_stage = 0
|
||||
else:
|
||||
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
logger.info(
|
||||
f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
|
||||
|
||||
# create dataloaders
|
||||
root = os.environ.get('DATA', '../data/cifar10')
|
||||
train_dataloader, test_dataloader = build_cifar(
|
||||
gpc.config.BATCH_SIZE, root, pad_if_needed=True)
|
||||
|
||||
# create loss function
|
||||
criterion = CrossEntropyLoss(label_smoothing=0.1)
|
||||
|
||||
# create optimizer
|
||||
optimizer = torch.optim.AdamW(model.parameters(
|
||||
), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
|
||||
|
||||
# create lr scheduler
|
||||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
|
||||
total_steps=gpc.config.NUM_EPOCHS,
|
||||
warmup_steps=gpc.config.WARMUP_EPOCHS)
|
||||
|
||||
# initialize
|
||||
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader,
|
||||
test_dataloader=test_dataloader)
|
||||
|
||||
logger.info("Engine is built", ranks=[0])
|
||||
|
||||
data_iter = iter(train_dataloader)
|
||||
|
||||
for epoch in range(gpc.config.NUM_EPOCHS):
|
||||
# training
|
||||
engine.train()
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS)
|
||||
progress = tqdm(range(len(train_dataloader)), desc=description)
|
||||
else:
|
||||
progress = range(len(train_dataloader))
|
||||
for _ in progress:
|
||||
engine.zero_grad()
|
||||
engine.execute_schedule(data_iter, return_output_label=False)
|
||||
engine.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
import os
|
||||
|
||||
import torch
|
||||
from titans.dataloader.cifar10 import build_cifar
|
||||
from titans.model.vit.vit import _create_vit_model
|
||||
from tqdm import tqdm
|
||||
|
||||
import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn import CrossEntropyLoss
|
||||
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||
from colossalai.pipeline.pipelinable import PipelinableContext
|
||||
from colossalai.utils import get_dataloader, is_using_pp
|
||||
|
||||
|
||||
class DummyDataloader():
|
||||
|
||||
def __init__(self, length, batch_size):
|
||||
self.length = length
|
||||
self.batch_size = batch_size
|
||||
|
||||
def generate(self):
|
||||
data = torch.rand(self.batch_size, 3, 224, 224)
|
||||
label = torch.randint(low=0, high=10, size=(self.batch_size,))
|
||||
return data, label
|
||||
|
||||
def __iter__(self):
|
||||
self.step = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.step < self.length:
|
||||
self.step += 1
|
||||
return self.generate()
|
||||
else:
|
||||
raise StopIteration
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
|
||||
def main():
|
||||
# initialize distributed setting
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument('-s', '--synthetic', action="store_true", help="whether use synthetic data")
|
||||
args = parser.parse_args()
|
||||
|
||||
# launch from torch
|
||||
colossalai.launch_from_torch(config=args.config)
|
||||
|
||||
# get logger
|
||||
logger = get_dist_logger()
|
||||
logger.info("initialized distributed environment", ranks=[0])
|
||||
|
||||
if hasattr(gpc.config, 'LOG_PATH'):
|
||||
if gpc.get_global_rank() == 0:
|
||||
log_path = gpc.config.LOG_PATH
|
||||
if not os.path.exists(log_path):
|
||||
os.mkdir(log_path)
|
||||
logger.log_to_file(log_path)
|
||||
|
||||
use_pipeline = is_using_pp()
|
||||
|
||||
# create model
|
||||
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
|
||||
patch_size=gpc.config.PATCH_SIZE,
|
||||
hidden_size=gpc.config.HIDDEN_SIZE,
|
||||
depth=gpc.config.DEPTH,
|
||||
num_heads=gpc.config.NUM_HEADS,
|
||||
mlp_ratio=gpc.config.MLP_RATIO,
|
||||
num_classes=10,
|
||||
init_method='jax',
|
||||
checkpoint=gpc.config.CHECKPOINT)
|
||||
|
||||
if use_pipeline:
|
||||
pipelinable = PipelinableContext()
|
||||
with pipelinable:
|
||||
model = _create_vit_model(**model_kwargs)
|
||||
pipelinable.to_layer_list()
|
||||
pipelinable.policy = "uniform"
|
||||
model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
|
||||
else:
|
||||
model = _create_vit_model(**model_kwargs)
|
||||
|
||||
# count number of parameters
|
||||
total_numel = 0
|
||||
for p in model.parameters():
|
||||
total_numel += p.numel()
|
||||
if not gpc.is_initialized(ParallelMode.PIPELINE):
|
||||
pipeline_stage = 0
|
||||
else:
|
||||
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
|
||||
|
||||
# create dataloaders
|
||||
root = os.environ.get('DATA', '../data')
|
||||
if args.synthetic:
|
||||
# if we use synthetic dataset
|
||||
# we train for 30 steps and eval for 10 steps per epoch
|
||||
train_dataloader = DummyDataloader(length=30, batch_size=gpc.config.BATCH_SIZE)
|
||||
test_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
|
||||
else:
|
||||
train_dataloader, test_dataloader = build_cifar(gpc.config.BATCH_SIZE, root, pad_if_needed=True)
|
||||
|
||||
# create loss function
|
||||
criterion = CrossEntropyLoss(label_smoothing=0.1)
|
||||
|
||||
# create optimizer
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
|
||||
|
||||
# create lr scheduler
|
||||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
|
||||
total_steps=gpc.config.NUM_EPOCHS,
|
||||
warmup_steps=gpc.config.WARMUP_EPOCHS)
|
||||
|
||||
# initialize
|
||||
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader,
|
||||
test_dataloader=test_dataloader)
|
||||
|
||||
logger.info("Engine is built", ranks=[0])
|
||||
|
||||
for epoch in range(gpc.config.NUM_EPOCHS):
|
||||
# training
|
||||
engine.train()
|
||||
data_iter = iter(train_dataloader)
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS)
|
||||
progress = tqdm(range(len(train_dataloader)), desc=description)
|
||||
else:
|
||||
progress = range(len(train_dataloader))
|
||||
for _ in progress:
|
||||
engine.zero_grad()
|
||||
engine.execute_schedule(data_iter, return_output_label=False)
|
||||
engine.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue