[tutorial] added synthetic data for hybrid parallel (#1921)

* [tutorial] added synthetic data for hybrid parallel

* polish code
pull/1922/head
Frank Lee 2022-11-12 18:18:55 +08:00 committed by GitHub
parent 3c42fdbedc
commit ff16773ded
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 154 additions and 124 deletions

View File

@ -1,16 +1,17 @@
# Handson 1: Multi-dimensional Parallelism with Colossal-AI # Handson 1: Multi-dimensional Parallelism with Colossal-AI
## Install Colossal-AI and other dependencies ## Install Titans Model Zoo
```bash ```bash
sh install.sh pip install titans
``` ```
## Prepare Dataset ## Prepare Dataset
We use CIFAR10 dataset in this example. The dataset will be downloaded to `../data` by default. We use CIFAR10 dataset in this example. You should invoke the `donwload_cifar10.py` in the tutorial root directory or directly run the `auto_parallel_with_resnet.py`.
The dataset will be downloaded to `colossalai/examples/tutorials/data` by default.
If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command. If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command.
```bash ```bash
@ -23,5 +24,9 @@ export DATA=/path/to/data
Current configuration setting on `config.py` is TP=2, PP=2. Current configuration setting on `config.py` is TP=2, PP=2.
```bash ```bash
# train with cifar10
colossalai run --nproc_per_node 4 train.py --config config.py
# train with synthetic data
colossalai run --nproc_per_node 4 train.py --config config.py colossalai run --nproc_per_node 4 train.py --config config.py
``` ```

View File

@ -1,4 +0,0 @@
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install colossalai==0.1.10+torch1.12cu11.3 -f https://release.colossalai.org
pip install titans
colossalai check -i

View File

@ -1,22 +1,50 @@
import os import os
import colossalai
import torch
import torch
from titans.dataloader.cifar10 import build_cifar
from titans.model.vit.vit import _create_vit_model
from tqdm import tqdm from tqdm import tqdm
import colossalai
from colossalai.context import ParallelMode from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger from colossalai.logging import get_dist_logger
from colossalai.nn import CrossEntropyLoss from colossalai.nn import CrossEntropyLoss
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.utils import is_using_pp, get_dataloader
from colossalai.pipeline.pipelinable import PipelinableContext from colossalai.pipeline.pipelinable import PipelinableContext
from titans.model.vit.vit import _create_vit_model from colossalai.utils import get_dataloader, is_using_pp
from titans.dataloader.cifar10 import build_cifar
class DummyDataloader():
def __init__(self, length, batch_size):
self.length = length
self.batch_size = batch_size
def generate(self):
data = torch.rand(self.batch_size, 3, 224, 224)
label = torch.randint(low=0, high=10, size=(self.batch_size,))
return data, label
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
def main(): def main():
# initialize distributed setting # initialize distributed setting
parser = colossalai.get_default_parser() parser = colossalai.get_default_parser()
parser.add_argument('-s', '--synthetic', action="store_true", help="whether use synthetic data")
args = parser.parse_args() args = parser.parse_args()
# launch from torch # launch from torch
@ -52,8 +80,7 @@ def main():
model = _create_vit_model(**model_kwargs) model = _create_vit_model(**model_kwargs)
pipelinable.to_layer_list() pipelinable.to_layer_list()
pipelinable.policy = "uniform" pipelinable.policy = "uniform"
model = pipelinable.partition( model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
else: else:
model = _create_vit_model(**model_kwargs) model = _create_vit_model(**model_kwargs)
@ -65,20 +92,23 @@ def main():
pipeline_stage = 0 pipeline_stage = 0
else: else:
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE) pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
logger.info( logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
# create dataloaders # create dataloaders
root = os.environ.get('DATA', '../data/cifar10') root = os.environ.get('DATA', '../data')
train_dataloader, test_dataloader = build_cifar( if args.synthetic:
gpc.config.BATCH_SIZE, root, pad_if_needed=True) # if we use synthetic dataset
# we train for 30 steps and eval for 10 steps per epoch
train_dataloader = DummyDataloader(length=30, batch_size=gpc.config.BATCH_SIZE)
test_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
else:
train_dataloader, test_dataloader = build_cifar(gpc.config.BATCH_SIZE, root, pad_if_needed=True)
# create loss function # create loss function
criterion = CrossEntropyLoss(label_smoothing=0.1) criterion = CrossEntropyLoss(label_smoothing=0.1)
# create optimizer # create optimizer
optimizer = torch.optim.AdamW(model.parameters( optimizer = torch.optim.AdamW(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
# create lr scheduler # create lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
@ -94,11 +124,10 @@ def main():
logger.info("Engine is built", ranks=[0]) logger.info("Engine is built", ranks=[0])
data_iter = iter(train_dataloader)
for epoch in range(gpc.config.NUM_EPOCHS): for epoch in range(gpc.config.NUM_EPOCHS):
# training # training
engine.train() engine.train()
data_iter = iter(train_dataloader)
if gpc.get_global_rank() == 0: if gpc.get_global_rank() == 0:
description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS) description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS)