[autoparallel] support addmm in tracer and solver (#1961)

* [fx] patch addmm

* [autoparallel] support addmm in tracer and solver
pull/1962/head
YuliangLiu0306 2022-11-16 14:59:18 +08:00 committed by GitHub
parent f7e276fa71
commit fea3cb661c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 328 additions and 21 deletions

View File

@ -1,3 +1,4 @@
from .addmm_handler import ADDMMFunctionHandler
from .batch_norm_handler import BatchNormModuleHandler
from .binary_elementwise_handler import BinaryElementwiseHandler
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
@ -18,5 +19,5 @@ __all__ = [
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'AddBMMFunctionHandler',
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry'
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler'
]

View File

@ -0,0 +1,91 @@
from typing import Dict, List, Union
import torch
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec, ShapeConsistencyManager
from ..sharding_strategy import CommAction, CommType, OperationData, OperationDataType, ShardingStrategy
from ..utils import comm_actions_for_oprands, recover_sharding_spec_for_broadcast_shape
from .node_handler import NodeHandler
from .registry import operator_registry
from .strategy import LinearProjectionStrategyGenerator, StrategyGenerator
__all__ = ['ADDMMFunctionHandler']
@operator_registry.register(torch.addmm)
@operator_registry.register(torch.Tensor.addmm)
class ADDMMFunctionHandler(NodeHandler):
"""
This is a NodeHandler class which deals with the batched matrix multiplication operation in PyTorch.
Such operations including `torch.bmm` and `torch.Tensor.bmm` require the tensor to be 3D, thus, there is
no logical-physical shape conversion in this handler.
"""
def _infer_op_data_type(self, tensor: torch.Tensor) -> OperationDataType:
if isinstance(tensor, torch.nn.parameter.Parameter):
data_type = OperationDataType.PARAM
else:
data_type = OperationDataType.ARG
return data_type
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# input operand
input_data = self.node.args[1]._meta_data
physical_input_operand = OperationData(name=str(self.node.args[1]),
type=self._infer_op_data_type(input_data),
data=input_data)
# other operand
other_data = self.node.args[2]._meta_data
physical_other_operand = OperationData(name=str(self.node.args[2]),
type=self._infer_op_data_type(other_data),
data=other_data)
# bias physical shape
bias_logical_shape = self.node._meta_data.shape
bias_data = self.node.args[0]._meta_data
physical_bias_operand = OperationData(name=str(self.node.args[0]),
type=self._infer_op_data_type(bias_data),
data=bias_data,
logical_shape=bias_logical_shape)
# output
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
mapping = {
"input": physical_input_operand,
"other": physical_other_operand,
"output": physical_output,
'bias': physical_bias_operand
}
return mapping
def get_strategy_generator(self) -> List[StrategyGenerator]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='addmm'))
return generators
def post_process(self, strategy: ShardingStrategy) -> Union[ShardingStrategy, List[ShardingStrategy]]:
# convert bias from its logical sharding spec to its physical sharding spec
op_data_mapping = self.get_operation_data_mapping()
bias_op_data = op_data_mapping['bias']
bias_physical_shape = bias_op_data.data.shape
bias_logical_shape = bias_op_data.logical_shape
bias_sharding_spec = strategy.get_sharding_spec_by_name(bias_op_data.name)
bias_sharding_spec, removed_dims = recover_sharding_spec_for_broadcast_shape(
bias_sharding_spec, bias_logical_shape, bias_physical_shape)
strategy.sharding_specs[bias_op_data] = bias_sharding_spec
if len(removed_dims) > 0:
comm_action = comm_actions_for_oprands(node=self.node,
removed_dims=removed_dims,
op_data=bias_op_data,
sharding_spec=bias_sharding_spec)
strategy.communication_actions[bias_op_data] = comm_action
return strategy

View File

@ -140,7 +140,8 @@ class LinearModuleHandler(ModuleHandler):
def get_strategy_generator(self) -> List[StrategyGenerator]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
generators.append(
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='linear'))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
@ -199,7 +200,8 @@ class LinearFunctionHandler(NodeHandler):
def get_strategy_generator(self) -> List[StrategyGenerator]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
generators.append(
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='linear'))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:

View File

@ -363,7 +363,8 @@ class MatMulHandler(NodeHandler):
elif self.matmul_type == MatMulType.MV:
generators.append(MatVecStrategyGenerator(op_data_mapping, self.device_mesh))
elif self.matmul_type == MatMulType.MM:
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
generators.append(
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='linear'))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:

View File

@ -209,6 +209,10 @@ class MatVecStrategyGenerator(MatMulStrategyGenerator):
class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
def __init__(self, operation_data_mapping, device_mesh, linear_projection_type='linear'):
super().__init__(operation_data_mapping, device_mesh)
self.linear_projection_type = linear_projection_type
def update_compute_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
# C = AB
# C: [M, N], A: [M, P], B: [P, N]
@ -272,14 +276,21 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
"other": {
-1: [mesh_dim_1]
},
"bias": {
-1: [mesh_dim_1]
},
"output": {
0: [mesh_dim_0],
-1: [mesh_dim_1]
},
}
# linear bias only has one dimension, but addmm bias has same dimensions
# as the output logically.
if self.linear_projection_type == 'linear':
dim_partition_dict_mapping['bias'] = {-1: [mesh_dim_1]}
elif self.linear_projection_type == 'addmm':
dim_partition_dict_mapping['bias'] = {0: [mesh_dim_0], -1: [mesh_dim_1]}
else:
raise ('Unsupported linear projection type')
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# set communication action
@ -293,13 +304,13 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
if self.is_param('other'):
other_comm_action = self.get_communication_action(
sharding_spec_mapping["output"],
sharding_spec_mapping["other"],
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
logical_process_axis=mesh_dim_0,
comm_type=CommType.HOOK)
else:
other_comm_action = self.get_communication_action(
sharding_spec_mapping["output"],
sharding_spec_mapping["other"],
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
logical_process_axis=mesh_dim_0,
comm_type=CommType.BEFORE,
@ -308,7 +319,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
communication_action_mapping['input'] = input_comm_action
communication_action_mapping['other'] = other_comm_action
if self.has_bias:
# we only add allreduce comm action for linear bias, because
# allreduce comm action for addmm bias will be considered in post processing
if self.has_bias and self.linear_projection_type == 'linear':
if self.is_param('bias'):
bias_comm_action = self.get_communication_action(
sharding_spec_mapping["bias"],
@ -347,6 +360,16 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
0: [mesh_dim_0]
},
}
# linear bias only has one dimension, but addmm bias has same dimensions
# as the output logically.
if self.linear_projection_type == 'linear':
dim_partition_dict_mapping['bias'] = {}
elif self.linear_projection_type == 'addmm':
dim_partition_dict_mapping['bias'] = {0: [mesh_dim_0]}
else:
raise ('Unsupported linear projection type')
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication action mapping
@ -360,13 +383,13 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
if self.is_param('other'):
other_comm_action = self.get_communication_action(
sharding_spec_mapping["output"],
sharding_spec_mapping["other"],
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
logical_process_axis=mesh_dim_0,
comm_type=CommType.HOOK)
else:
other_comm_action = self.get_communication_action(
sharding_spec_mapping["output"],
sharding_spec_mapping["other"],
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
logical_process_axis=mesh_dim_0,
comm_type=CommType.BEFORE,
@ -375,7 +398,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
communication_action_mapping['other'] = other_comm_action
communication_action_mapping['output'] = output_comm_action
if self.has_bias:
# we only add allreduce comm action for linear bias, because
# allreduce comm action for addmm bias will be considered in post processing
if self.has_bias and self.linear_projection_type == 'linear':
if self.is_param('bias'):
bias_comm_action = self.get_communication_action(
sharding_spec_mapping["bias"],
@ -415,6 +440,10 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
-1: [mesh_dim_1]
},
}
# We don't have to do anything special for bias here, because
# the bias is already the same sharding spec as the output.
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication actions
@ -451,7 +480,8 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
"bias": {},
"output": {},
}
# We don't have to do anything special for bias here, because
# the bias is already the same sharding spec as the output.
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication action
@ -484,7 +514,8 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
-1: [mesh_dim]
},
}
# We don't have to do anything special for bias here, because
# the bias is already the same sharding spec as the output.
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication actions
@ -515,6 +546,16 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
0: [mesh_dim_0, mesh_dim_1]
},
}
# linear bias only has one dimension, but addmm bias has same dimensions
# as the output logically.
if self.linear_projection_type == 'linear':
dim_partition_dict_mapping['bias'] = {}
elif self.linear_projection_type == 'addmm':
dim_partition_dict_mapping['bias'] = {0: [mesh_dim_0, mesh_dim_1]}
else:
raise ('Unsupported linear projection type')
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication action
@ -534,7 +575,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
arg_index=1)
communication_action_mapping['other'] = other_comm_action
if self.has_bias:
# we only add allreduce comm action for linear bias, because
# allreduce comm action for addmm bias will be considered in post processing
if self.has_bias and self.linear_projection_type == 'linear':
if self.is_param('bias'):
bias_comm_action = self.get_communication_action(
sharding_spec=sharding_spec_mapping['bias'],
@ -568,6 +611,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
"bias": {},
"output": {},
}
# We don't have to do anything special for bias here, because
# the bias is already the same sharding spec as the output.
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication action
@ -600,6 +646,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
-1: [mesh_dim_0, mesh_dim_1]
},
}
# We don't have to do anything special for bias here, because
# the bias is already the same sharding spec as the output.
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# get communication action
@ -626,10 +675,7 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
assert input_data.data.dim() > 0 and other_data.data.dim() == 2
assert other_data.logical_shape[0] == input_data.logical_shape[-1]
# check if bias has the same a valid dim
has_bias = "bias" in self.op_data
if has_bias:
if self.has_bias:
bias_data = self.op_data['bias']
assert bias_data.logical_shape[-1] == other_data.logical_shape[-1]

View File

@ -72,11 +72,21 @@ def torch_linear(input, mat2, bias=None, *, out=None):
def torch_addbmm(input, mat1, mat2, *, beta=1, alpha=1, out=None):
if out is not None:
raise ValueError("Don't support in-place abs for MetaTensor analysis")
batch_size, n, m = mat1.shape
_, n, _ = mat1.shape
_, _, p = mat2.shape
return torch.empty(n, p, device="meta")
@meta_patched_function.register(torch.addmm)
@meta_patched_function.register(torch.Tensor.addmm)
def torch_addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None):
if out is not None:
raise ValueError("Don't support in-place abs for MetaTensor analysis")
n, _ = mat1.shape
_, p = mat2.shape
return torch.empty(n, p, device="meta")
@meta_patched_function.register(torch.var_mean)
def torch_var_mean(input, dim, unbiased=True, keepdim=False, *, out=None):
assert out is None, 'saving to out is not supported yet'

View File

@ -0,0 +1,156 @@
from faulthandler import disable
from functools import partial
from xml.dom import WrongDocumentErr
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from typing_extensions import Self
from colossalai.auto_parallel.tensor_shard.node_handler import ADDMMFunctionHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
)
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
class AddmmModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, m1, m2):
x = torch.addmm(input, m1, m2)
return x
def check_linear_function_handler(rank, input_shape, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = AddmmModel().cuda()
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
input = torch.rand(input_shape).cuda()
m1 = torch.rand(4, 8).cuda()
m2 = torch.rand(8, 16).cuda()
# the index of addmm node in computation graph
node_index = 3
# strategy number of linear node
strategy_number = 10
# construct input args
input_args = [input, m1, m2]
# construct meta arg names
meta_arg_names = ['input', 'm1', 'm2']
numerical_test_for_node_strategy(model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=input_args,
meta_arg_names=meta_arg_names)
tracer = ColoTracer()
graph = tracer.trace(model,
meta_args={
"input": torch.rand(input_shape).to('meta'),
'm1': torch.rand(4, 8).to('meta'),
'm2': torch.rand(8, 16).to('meta'),
})
gm = ColoGraphModule(model, graph)
# [input_1, m1, m2, addmm, output]
node_list = list(graph.nodes)
addmm_node = node_list[3]
strategies_vector = StrategiesVector(addmm_node)
# build handler
handler = ADDMMFunctionHandler(node=addmm_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
# check operation data mapping
mapping = handler.get_operation_data_mapping()
assert mapping['input'].name == "m1"
assert mapping['input'].data.shape == torch.Size([4, 8])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 8])
assert mapping['other'].name == "m2"
assert mapping['other'].data.shape == torch.Size([8, 16])
assert mapping['other'].type == OperationDataType.ARG
assert mapping['other'].logical_shape == torch.Size([8, 16])
assert mapping['bias'].name == "input_1"
assert mapping['bias'].data.shape == torch.Size(input_shape)
assert mapping['bias'].type == OperationDataType.ARG
assert mapping['bias'].logical_shape == torch.Size([4, 16])
assert mapping['output'].name == "addmm"
assert mapping['output'].data.shape == torch.Size([4, 16])
assert mapping['output'].type == OperationDataType.OUTPUT
# one strategy will be converted to different physical sharding spec
assert len(strategy_name_list) > 8
# SS = SR x RS
assert 'S0S1 = S0R x RS1' in strategy_name_list
assert 'S1S0 = S1R x RS0' in strategy_name_list
# SR = SS x SR
assert 'S0R = S0S1 x S1R' in strategy_name_list
assert 'S1R = S1S0 x S0R' in strategy_name_list
# RS = RS x SS
assert 'RS0 = RS1 x S1S0' in strategy_name_list
assert 'RS1 = RS0 x S0S1' in strategy_name_list
# RR = RS x SR
assert 'RR = RS0 x S0R' in strategy_name_list
assert 'RR = RS1 x S1R' in strategy_name_list
# RS= RR x RS
assert 'RS0 = RR x RS0' in strategy_name_list
assert 'RS1 = RR x RS1' in strategy_name_list
for strategy in strategies_vector:
strategy: ShardingStrategy
input_sharding_spec = strategy.get_sharding_spec_by_name('m1')
weight_sharding_spec = strategy.get_sharding_spec_by_name('m2')
output_sharding_spec = strategy.get_sharding_spec_by_name('addmm')
bias_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
# make sure the sharding matches across different operation data
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
assert weight_sharding_spec.sharding_sequence[0] == input_sharding_spec.sharding_sequence[1]
assert weight_sharding_spec.sharding_sequence[1] == output_sharding_spec.sharding_sequence[1]
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
@parameterize('input_shape', [(16,), (4, 16)])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_addmm_handler(input_shape):
world_size = 4
run_func_function = partial(check_linear_function_handler,
input_shape=input_shape,
world_size=world_size,
port=free_port())
mp.spawn(run_func_function, nprocs=world_size)
if __name__ == '__main__':
test_addmm_handler()