mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] support addmm in tracer and solver (#1961)
* [fx] patch addmm * [autoparallel] support addmm in tracer and solverpull/1962/head
parent
f7e276fa71
commit
fea3cb661c
|
@ -1,3 +1,4 @@
|
|||
from .addmm_handler import ADDMMFunctionHandler
|
||||
from .batch_norm_handler import BatchNormModuleHandler
|
||||
from .binary_elementwise_handler import BinaryElementwiseHandler
|
||||
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
||||
|
@ -18,5 +19,5 @@ __all__ = [
|
|||
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'AddBMMFunctionHandler',
|
||||
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
||||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
|
||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry'
|
||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,91 @@
|
|||
from typing import Dict, List, Union
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec, ShapeConsistencyManager
|
||||
|
||||
from ..sharding_strategy import CommAction, CommType, OperationData, OperationDataType, ShardingStrategy
|
||||
from ..utils import comm_actions_for_oprands, recover_sharding_spec_for_broadcast_shape
|
||||
from .node_handler import NodeHandler
|
||||
from .registry import operator_registry
|
||||
from .strategy import LinearProjectionStrategyGenerator, StrategyGenerator
|
||||
|
||||
__all__ = ['ADDMMFunctionHandler']
|
||||
|
||||
|
||||
@operator_registry.register(torch.addmm)
|
||||
@operator_registry.register(torch.Tensor.addmm)
|
||||
class ADDMMFunctionHandler(NodeHandler):
|
||||
"""
|
||||
This is a NodeHandler class which deals with the batched matrix multiplication operation in PyTorch.
|
||||
Such operations including `torch.bmm` and `torch.Tensor.bmm` require the tensor to be 3D, thus, there is
|
||||
no logical-physical shape conversion in this handler.
|
||||
"""
|
||||
|
||||
def _infer_op_data_type(self, tensor: torch.Tensor) -> OperationDataType:
|
||||
if isinstance(tensor, torch.nn.parameter.Parameter):
|
||||
data_type = OperationDataType.PARAM
|
||||
else:
|
||||
data_type = OperationDataType.ARG
|
||||
return data_type
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
|
||||
# input operand
|
||||
input_data = self.node.args[1]._meta_data
|
||||
physical_input_operand = OperationData(name=str(self.node.args[1]),
|
||||
type=self._infer_op_data_type(input_data),
|
||||
data=input_data)
|
||||
|
||||
# other operand
|
||||
other_data = self.node.args[2]._meta_data
|
||||
physical_other_operand = OperationData(name=str(self.node.args[2]),
|
||||
type=self._infer_op_data_type(other_data),
|
||||
data=other_data)
|
||||
# bias physical shape
|
||||
bias_logical_shape = self.node._meta_data.shape
|
||||
bias_data = self.node.args[0]._meta_data
|
||||
physical_bias_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=self._infer_op_data_type(bias_data),
|
||||
data=bias_data,
|
||||
logical_shape=bias_logical_shape)
|
||||
|
||||
# output
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {
|
||||
"input": physical_input_operand,
|
||||
"other": physical_other_operand,
|
||||
"output": physical_output,
|
||||
'bias': physical_bias_operand
|
||||
}
|
||||
|
||||
return mapping
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(
|
||||
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='addmm'))
|
||||
return generators
|
||||
|
||||
def post_process(self, strategy: ShardingStrategy) -> Union[ShardingStrategy, List[ShardingStrategy]]:
|
||||
# convert bias from its logical sharding spec to its physical sharding spec
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
|
||||
bias_op_data = op_data_mapping['bias']
|
||||
bias_physical_shape = bias_op_data.data.shape
|
||||
bias_logical_shape = bias_op_data.logical_shape
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name(bias_op_data.name)
|
||||
bias_sharding_spec, removed_dims = recover_sharding_spec_for_broadcast_shape(
|
||||
bias_sharding_spec, bias_logical_shape, bias_physical_shape)
|
||||
strategy.sharding_specs[bias_op_data] = bias_sharding_spec
|
||||
|
||||
if len(removed_dims) > 0:
|
||||
comm_action = comm_actions_for_oprands(node=self.node,
|
||||
removed_dims=removed_dims,
|
||||
op_data=bias_op_data,
|
||||
sharding_spec=bias_sharding_spec)
|
||||
strategy.communication_actions[bias_op_data] = comm_action
|
||||
|
||||
return strategy
|
|
@ -140,7 +140,8 @@ class LinearModuleHandler(ModuleHandler):
|
|||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
generators.append(
|
||||
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='linear'))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
|
@ -199,7 +200,8 @@ class LinearFunctionHandler(NodeHandler):
|
|||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
generators.append(
|
||||
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='linear'))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
|
|
|
@ -363,7 +363,8 @@ class MatMulHandler(NodeHandler):
|
|||
elif self.matmul_type == MatMulType.MV:
|
||||
generators.append(MatVecStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
elif self.matmul_type == MatMulType.MM:
|
||||
generators.append(LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh))
|
||||
generators.append(
|
||||
LinearProjectionStrategyGenerator(op_data_mapping, self.device_mesh, linear_projection_type='linear'))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
|
|
|
@ -209,6 +209,10 @@ class MatVecStrategyGenerator(MatMulStrategyGenerator):
|
|||
|
||||
class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
||||
|
||||
def __init__(self, operation_data_mapping, device_mesh, linear_projection_type='linear'):
|
||||
super().__init__(operation_data_mapping, device_mesh)
|
||||
self.linear_projection_type = linear_projection_type
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
|
||||
# C = AB
|
||||
# C: [M, N], A: [M, P], B: [P, N]
|
||||
|
@ -272,14 +276,21 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
"other": {
|
||||
-1: [mesh_dim_1]
|
||||
},
|
||||
"bias": {
|
||||
-1: [mesh_dim_1]
|
||||
},
|
||||
"output": {
|
||||
0: [mesh_dim_0],
|
||||
-1: [mesh_dim_1]
|
||||
},
|
||||
}
|
||||
|
||||
# linear bias only has one dimension, but addmm bias has same dimensions
|
||||
# as the output logically.
|
||||
if self.linear_projection_type == 'linear':
|
||||
dim_partition_dict_mapping['bias'] = {-1: [mesh_dim_1]}
|
||||
elif self.linear_projection_type == 'addmm':
|
||||
dim_partition_dict_mapping['bias'] = {0: [mesh_dim_0], -1: [mesh_dim_1]}
|
||||
else:
|
||||
raise ('Unsupported linear projection type')
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# set communication action
|
||||
|
@ -293,13 +304,13 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
|
||||
if self.is_param('other'):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["output"],
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.HOOK)
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["output"],
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
|
@ -308,7 +319,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
communication_action_mapping['input'] = input_comm_action
|
||||
communication_action_mapping['other'] = other_comm_action
|
||||
|
||||
if self.has_bias:
|
||||
# we only add allreduce comm action for linear bias, because
|
||||
# allreduce comm action for addmm bias will be considered in post processing
|
||||
if self.has_bias and self.linear_projection_type == 'linear':
|
||||
if self.is_param('bias'):
|
||||
bias_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["bias"],
|
||||
|
@ -347,6 +360,16 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
0: [mesh_dim_0]
|
||||
},
|
||||
}
|
||||
|
||||
# linear bias only has one dimension, but addmm bias has same dimensions
|
||||
# as the output logically.
|
||||
if self.linear_projection_type == 'linear':
|
||||
dim_partition_dict_mapping['bias'] = {}
|
||||
elif self.linear_projection_type == 'addmm':
|
||||
dim_partition_dict_mapping['bias'] = {0: [mesh_dim_0]}
|
||||
else:
|
||||
raise ('Unsupported linear projection type')
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication action mapping
|
||||
|
@ -360,13 +383,13 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
|
||||
if self.is_param('other'):
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["output"],
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.HOOK)
|
||||
else:
|
||||
other_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["output"],
|
||||
sharding_spec_mapping["other"],
|
||||
communication_pattern=CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD,
|
||||
logical_process_axis=mesh_dim_0,
|
||||
comm_type=CommType.BEFORE,
|
||||
|
@ -375,7 +398,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
communication_action_mapping['other'] = other_comm_action
|
||||
communication_action_mapping['output'] = output_comm_action
|
||||
|
||||
if self.has_bias:
|
||||
# we only add allreduce comm action for linear bias, because
|
||||
# allreduce comm action for addmm bias will be considered in post processing
|
||||
if self.has_bias and self.linear_projection_type == 'linear':
|
||||
if self.is_param('bias'):
|
||||
bias_comm_action = self.get_communication_action(
|
||||
sharding_spec_mapping["bias"],
|
||||
|
@ -415,6 +440,10 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
-1: [mesh_dim_1]
|
||||
},
|
||||
}
|
||||
|
||||
# We don't have to do anything special for bias here, because
|
||||
# the bias is already the same sharding spec as the output.
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication actions
|
||||
|
@ -451,7 +480,8 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
"bias": {},
|
||||
"output": {},
|
||||
}
|
||||
|
||||
# We don't have to do anything special for bias here, because
|
||||
# the bias is already the same sharding spec as the output.
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication action
|
||||
|
@ -484,7 +514,8 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
-1: [mesh_dim]
|
||||
},
|
||||
}
|
||||
|
||||
# We don't have to do anything special for bias here, because
|
||||
# the bias is already the same sharding spec as the output.
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication actions
|
||||
|
@ -515,6 +546,16 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
0: [mesh_dim_0, mesh_dim_1]
|
||||
},
|
||||
}
|
||||
|
||||
# linear bias only has one dimension, but addmm bias has same dimensions
|
||||
# as the output logically.
|
||||
if self.linear_projection_type == 'linear':
|
||||
dim_partition_dict_mapping['bias'] = {}
|
||||
elif self.linear_projection_type == 'addmm':
|
||||
dim_partition_dict_mapping['bias'] = {0: [mesh_dim_0, mesh_dim_1]}
|
||||
else:
|
||||
raise ('Unsupported linear projection type')
|
||||
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication action
|
||||
|
@ -534,7 +575,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
arg_index=1)
|
||||
communication_action_mapping['other'] = other_comm_action
|
||||
|
||||
if self.has_bias:
|
||||
# we only add allreduce comm action for linear bias, because
|
||||
# allreduce comm action for addmm bias will be considered in post processing
|
||||
if self.has_bias and self.linear_projection_type == 'linear':
|
||||
if self.is_param('bias'):
|
||||
bias_comm_action = self.get_communication_action(
|
||||
sharding_spec=sharding_spec_mapping['bias'],
|
||||
|
@ -568,6 +611,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
"bias": {},
|
||||
"output": {},
|
||||
}
|
||||
|
||||
# We don't have to do anything special for bias here, because
|
||||
# the bias is already the same sharding spec as the output.
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication action
|
||||
|
@ -600,6 +646,9 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
-1: [mesh_dim_0, mesh_dim_1]
|
||||
},
|
||||
}
|
||||
|
||||
# We don't have to do anything special for bias here, because
|
||||
# the bias is already the same sharding spec as the output.
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
# get communication action
|
||||
|
@ -626,10 +675,7 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator):
|
|||
assert input_data.data.dim() > 0 and other_data.data.dim() == 2
|
||||
assert other_data.logical_shape[0] == input_data.logical_shape[-1]
|
||||
|
||||
# check if bias has the same a valid dim
|
||||
has_bias = "bias" in self.op_data
|
||||
|
||||
if has_bias:
|
||||
if self.has_bias:
|
||||
bias_data = self.op_data['bias']
|
||||
assert bias_data.logical_shape[-1] == other_data.logical_shape[-1]
|
||||
|
||||
|
|
|
@ -72,11 +72,21 @@ def torch_linear(input, mat2, bias=None, *, out=None):
|
|||
def torch_addbmm(input, mat1, mat2, *, beta=1, alpha=1, out=None):
|
||||
if out is not None:
|
||||
raise ValueError("Don't support in-place abs for MetaTensor analysis")
|
||||
batch_size, n, m = mat1.shape
|
||||
_, n, _ = mat1.shape
|
||||
_, _, p = mat2.shape
|
||||
return torch.empty(n, p, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.addmm)
|
||||
@meta_patched_function.register(torch.Tensor.addmm)
|
||||
def torch_addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None):
|
||||
if out is not None:
|
||||
raise ValueError("Don't support in-place abs for MetaTensor analysis")
|
||||
n, _ = mat1.shape
|
||||
_, p = mat2.shape
|
||||
return torch.empty(n, p, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.var_mean)
|
||||
def torch_var_mean(input, dim, unbiased=True, keepdim=False, *, out=None):
|
||||
assert out is None, 'saving to out is not supported yet'
|
||||
|
|
|
@ -0,0 +1,156 @@
|
|||
from faulthandler import disable
|
||||
from functools import partial
|
||||
from xml.dom import WrongDocumentErr
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from typing_extensions import Self
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import ADDMMFunctionHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
|
||||
class AddmmModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input, m1, m2):
|
||||
x = torch.addmm(input, m1, m2)
|
||||
return x
|
||||
|
||||
|
||||
def check_linear_function_handler(rank, input_shape, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = AddmmModel().cuda()
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
input = torch.rand(input_shape).cuda()
|
||||
m1 = torch.rand(4, 8).cuda()
|
||||
m2 = torch.rand(8, 16).cuda()
|
||||
# the index of addmm node in computation graph
|
||||
node_index = 3
|
||||
# strategy number of linear node
|
||||
strategy_number = 10
|
||||
# construct input args
|
||||
input_args = [input, m1, m2]
|
||||
# construct meta arg names
|
||||
meta_arg_names = ['input', 'm1', 'm2']
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=input_args,
|
||||
meta_arg_names=meta_arg_names)
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(input_shape).to('meta'),
|
||||
'm1': torch.rand(4, 8).to('meta'),
|
||||
'm2': torch.rand(8, 16).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
# [input_1, m1, m2, addmm, output]
|
||||
node_list = list(graph.nodes)
|
||||
addmm_node = node_list[3]
|
||||
strategies_vector = StrategiesVector(addmm_node)
|
||||
|
||||
# build handler
|
||||
handler = ADDMMFunctionHandler(node=addmm_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
assert mapping['input'].name == "m1"
|
||||
assert mapping['input'].data.shape == torch.Size([4, 8])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 8])
|
||||
|
||||
assert mapping['other'].name == "m2"
|
||||
assert mapping['other'].data.shape == torch.Size([8, 16])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([8, 16])
|
||||
|
||||
assert mapping['bias'].name == "input_1"
|
||||
assert mapping['bias'].data.shape == torch.Size(input_shape)
|
||||
assert mapping['bias'].type == OperationDataType.ARG
|
||||
assert mapping['bias'].logical_shape == torch.Size([4, 16])
|
||||
|
||||
assert mapping['output'].name == "addmm"
|
||||
assert mapping['output'].data.shape == torch.Size([4, 16])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0' in strategy_name_list
|
||||
|
||||
# SR = SS x SR
|
||||
assert 'S0R = S0S1 x S1R' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R' in strategy_name_list
|
||||
|
||||
# RS = RS x SS
|
||||
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
||||
assert 'RS1 = RS0 x S0S1' in strategy_name_list
|
||||
|
||||
# RR = RS x SR
|
||||
assert 'RR = RS0 x S0R' in strategy_name_list
|
||||
assert 'RR = RS1 x S1R' in strategy_name_list
|
||||
|
||||
# RS= RR x RS
|
||||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('m1')
|
||||
weight_sharding_spec = strategy.get_sharding_spec_by_name('m2')
|
||||
output_sharding_spec = strategy.get_sharding_spec_by_name('addmm')
|
||||
bias_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
|
||||
# make sure the sharding matches across different operation data
|
||||
assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1]
|
||||
assert weight_sharding_spec.sharding_sequence[0] == input_sharding_spec.sharding_sequence[1]
|
||||
assert weight_sharding_spec.sharding_sequence[1] == output_sharding_spec.sharding_sequence[1]
|
||||
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
|
||||
|
||||
|
||||
@parameterize('input_shape', [(16,), (4, 16)])
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_addmm_handler(input_shape):
|
||||
world_size = 4
|
||||
run_func_function = partial(check_linear_function_handler,
|
||||
input_shape=input_shape,
|
||||
world_size=world_size,
|
||||
port=free_port())
|
||||
mp.spawn(run_func_function, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_addmm_handler()
|
Loading…
Reference in New Issue