[misc] solve booster hang by rename the variable

colossalchat
haze188 2024-07-09 09:44:04 +00:00 committed by Hongxin Liu
parent 13b48ac0aa
commit fe24789eb1
1 changed files with 14 additions and 17 deletions

View File

@ -3,22 +3,21 @@ from copy import deepcopy
import pytest
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralModel
import colossalai
from colossalai.booster.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import loose_close
NUM_BATCH=4
NUM_BATCH = 4
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
HIDDEN_SIZE_PER_HEAD = 4
NUM_HEADS=2
NUM_HEADS = 4
TOP_K = 2
@ -35,7 +34,7 @@ def split_grad(grad, world_size):
@parameterize("stage", [1])
@parameterize("ep_size", [1, 2, 4])
@parameterize("tp_size", [1, 2, 4])
def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int = 1):
dtype = torch.bfloat16
rank = torch.distributed.get_rank()
@ -56,19 +55,14 @@ def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
zero_model = deepcopy(torch_model).to(dtype)
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
booster = Booster(
moe_booster = Booster(
plugin=MoeHybridParallelPlugin(
tp_size=tp_size,
pp_size=1,
ep_size=ep_size,
zero_stage=stage,
overlap_communication=False,
initial_scale=1
tp_size=tp_size, pp_size=1, ep_size=ep_size, zero_stage=stage, overlap_communication=False, initial_scale=1
)
)
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
zero_model, zero_optimizer, _, _, _ = moe_booster.boost(zero_model, zero_optimizer)
booster = Booster(
hybird_booster = Booster(
plugin=HybridParallelPlugin(
tp_size=tp_size,
pp_size=1,
@ -77,8 +71,9 @@ def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
initial_scale=1,
)
)
hybrid_model, hybrid_optimizer, _, _, _ = booster.boost(torch_model, torch.optim.SGD(torch_model.parameters(), lr=1))
hybrid_model, hybrid_optimizer, _, _, _ = hybird_booster.boost(
torch_model, torch.optim.SGD(torch_model.parameters(), lr=1)
)
# create different input
seed_all(1453 + rank)
@ -86,7 +81,9 @@ def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
zero_model.train()
for _ in range(2):
# zero-dp forward
input_data = torch.rand(NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True).cuda()
input_data = torch.rand(
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
).cuda()
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
# zero-dp backward
zero_optimizer.backward(zero_output)