mirror of https://github.com/hpcaitech/ColossalAI
[misc] solve booster hang by rename the variable
parent
13b48ac0aa
commit
fe24789eb1
|
@ -3,14 +3,13 @@ from copy import deepcopy
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.booster import Booster
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.booster.plugin import HybridParallelPlugin
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import loose_close
|
||||
|
@ -18,7 +17,7 @@ from tests.test_moe.moe_utils import loose_close
|
|||
NUM_BATCH = 4
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||
HIDDEN_SIZE_PER_HEAD = 4
|
||||
NUM_HEADS=2
|
||||
NUM_HEADS = 4
|
||||
TOP_K = 2
|
||||
|
||||
|
||||
|
@ -56,19 +55,14 @@ def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
|
|||
|
||||
zero_model = deepcopy(torch_model).to(dtype)
|
||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||
booster = Booster(
|
||||
moe_booster = Booster(
|
||||
plugin=MoeHybridParallelPlugin(
|
||||
tp_size=tp_size,
|
||||
pp_size=1,
|
||||
ep_size=ep_size,
|
||||
zero_stage=stage,
|
||||
overlap_communication=False,
|
||||
initial_scale=1
|
||||
tp_size=tp_size, pp_size=1, ep_size=ep_size, zero_stage=stage, overlap_communication=False, initial_scale=1
|
||||
)
|
||||
)
|
||||
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||
zero_model, zero_optimizer, _, _, _ = moe_booster.boost(zero_model, zero_optimizer)
|
||||
|
||||
booster = Booster(
|
||||
hybird_booster = Booster(
|
||||
plugin=HybridParallelPlugin(
|
||||
tp_size=tp_size,
|
||||
pp_size=1,
|
||||
|
@ -77,8 +71,9 @@ def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
|
|||
initial_scale=1,
|
||||
)
|
||||
)
|
||||
hybrid_model, hybrid_optimizer, _, _, _ = booster.boost(torch_model, torch.optim.SGD(torch_model.parameters(), lr=1))
|
||||
|
||||
hybrid_model, hybrid_optimizer, _, _, _ = hybird_booster.boost(
|
||||
torch_model, torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
)
|
||||
# create different input
|
||||
seed_all(1453 + rank)
|
||||
|
||||
|
@ -86,7 +81,9 @@ def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
|
|||
zero_model.train()
|
||||
for _ in range(2):
|
||||
# zero-dp forward
|
||||
input_data = torch.rand(NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True).cuda()
|
||||
input_data = torch.rand(
|
||||
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
||||
).cuda()
|
||||
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||
# zero-dp backward
|
||||
zero_optimizer.backward(zero_output)
|
||||
|
|
Loading…
Reference in New Issue