diff --git a/colossalai/kernel/triton/__init__.py b/colossalai/kernel/triton/__init__.py index 51b7fcc6c..f5f530c92 100644 --- a/colossalai/kernel/triton/__init__.py +++ b/colossalai/kernel/triton/__init__.py @@ -11,6 +11,7 @@ if HAS_TRITON: from .context_attn_unpad import context_attention_unpadded from .fused_layernorm import layer_norm from .gptq_triton import gptq_fused_linear_triton + from .no_pad_rotary_embedding import rotary_embedding from .softmax import softmax __all__ = [ @@ -18,4 +19,5 @@ if HAS_TRITON: "softmax", "layer_norm", "gptq_fused_linear_triton", + "rotary_embedding", ] diff --git a/colossalai/kernel/triton/no_pad_rotary_embedding.py b/colossalai/kernel/triton/no_pad_rotary_embedding.py new file mode 100644 index 000000000..e4bab18eb --- /dev/null +++ b/colossalai/kernel/triton/no_pad_rotary_embedding.py @@ -0,0 +1,149 @@ +import torch +import triton +import triton.language as tl + + +@triton.jit +def rotary_embedding_kernel( + q, + k, + cos, + sin, + q_token_stride, + q_head_stride, + k_token_stride, + k_head_stride, + head_dim_stride, + cos_token_stride, + cos_stride, + q_total_tokens, + Q_HEAD_NUM: tl.constexpr, + K_HEAD_NUM: tl.constexpr, + HEAD_DIM: tl.constexpr, + BLOCK_HEAD: tl.constexpr, + BLOCK_TOKENS: tl.constexpr, +): + block_head_index = tl.program_id(0) + block_token_index = tl.program_id(1) + + rotary_data = q + HEAD_NUM = Q_HEAD_NUM + head_stride = q_head_stride + token_stride = q_token_stride + + if block_token_index * BLOCK_TOKENS >= q_total_tokens: + block_token_index = block_token_index - tl.cdiv(q_total_tokens, BLOCK_TOKENS) + rotary_data = k + HEAD_NUM = K_HEAD_NUM + head_stride = k_head_stride + token_stride = k_token_stride + + tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS) + head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD) + + dim_range0 = tl.arange(0, HEAD_DIM // 2) + dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM) + + off_data0 = ( + tokens_range[:, None, None] * token_stride + + head_range[None, :, None] * head_stride + + dim_range0[None, None, :] * head_dim_stride + ) + off_data1 = ( + tokens_range[:, None, None] * token_stride + + head_range[None, :, None] * head_stride + + dim_range1[None, None, :] * head_dim_stride + ) + + loaded_data0 = tl.load( + rotary_data + off_data0, + mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), + other=0.0, + ) + loaded_data1 = tl.load( + rotary_data + off_data1, + mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), + other=0.0, + ) + + off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride + + loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0) + loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0) + + out0 = loaded_data0 * loaded_cos[:, None, :] - loaded_data1 * loaded_sin[:, None, :] + out1 = loaded_data0 * loaded_sin[:, None, :] + loaded_data1 * loaded_cos[:, None, :] + + # concat + tl.store( + rotary_data + off_data0, + out0, + mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), + ) + tl.store( + rotary_data + off_data1, + out1, + mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)), + ) + + +@torch.no_grad() +def rotary_embedding( + q: torch.Tensor, + k: torch.Tensor, + cos: torch.Tensor, + sin: torch.Tensor, +): + """ + Args: + q: query tensor, [total_tokens, head_num, head_dim] + k: key tensor, [total_tokens, head_num, head_dim] + cos: cosine for rotary embedding, [total_tokens, head_dim] + sin: sine for rotary embedding, [total_tokens, head_dim] + """ + q_total_tokens, q_head_num, head_dim = q.shape + assert q.shape[0] == cos.shape[0] and q.shape[0] == sin.shape[0], f"q shape {q.shape} cos shape {cos.shape}" + BLOCK_HEAD = 4 + BLOCK_TOKENS = 8 + grid = (triton.cdiv(q_head_num, BLOCK_HEAD), 2 * triton.cdiv(q_total_tokens, BLOCK_TOKENS)) + + if head_dim >= 128: + num_warps = 8 + else: + num_warps = 4 + + q_token_stride = q.stride(0) + q_head_stride = q.stride(1) + head_dim_stride = q.stride(2) + + k_token_stride = k.stride(0) + k_head_stride = k.stride(1) + + k_head_num = q.shape[1] + + cos_token_stride = cos.stride(0) + cos_stride = cos.stride(1) + + rotary_embedding_kernel[grid]( + q, + k, + cos, + sin, + q_token_stride, + q_head_stride, + k_token_stride, + k_head_stride, + head_dim_stride, + cos_token_stride, + cos_stride, + q_total_tokens, + Q_HEAD_NUM=q_head_num, + K_HEAD_NUM=k_head_num, + HEAD_DIM=head_dim, + BLOCK_HEAD=BLOCK_HEAD, + BLOCK_TOKENS=BLOCK_TOKENS, + num_warps=num_warps, + num_stages=1, + ) + + return diff --git a/tests/test_infer_ops/triton/test_rotary_embdding_unpad.py b/tests/test_infer_ops/triton/test_rotary_embdding_unpad.py new file mode 100644 index 000000000..eeb125776 --- /dev/null +++ b/tests/test_infer_ops/triton/test_rotary_embdding_unpad.py @@ -0,0 +1,56 @@ +import pytest +import torch +from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb + +from colossalai.kernel.triton import rotary_embedding + + +def torch_rotary_emb(x, cos, sin): + seq_len, h, dim = x.shape + x0 = x[:, :, 0 : dim // 2] + x1 = x[:, :, dim // 2 : dim] + cos = cos.view((seq_len, 1, dim // 2)) + sin = sin.view((seq_len, 1, dim // 2)) + o0 = x0 * cos - x1 * sin + o1 = x0 * sin + x1 * cos + return torch.cat((o0, o1), dim=-1) + + +@pytest.mark.parametrize("BATCH_SIZE", [4]) +@pytest.mark.parametrize("SEQ_LEN", [64]) +@pytest.mark.parametrize("H", [32]) +@pytest.mark.parametrize("D", [64]) +@pytest.mark.parametrize("dtype", [torch.float32]) +def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype): + TOTAL_TOKENS = BATCH_SIZE * SEQ_LEN + # our crafted op equals to Transformers + x0 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D) + x1 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D) + emb = LlamaRotaryEmbedding(D) + cos, sin = emb(x0, TOTAL_TOKENS) + cos_2 = cos[:, :32] + sin_2 = sin[:, :32] + position_ids = torch.arange(TOTAL_TOKENS) + embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin, position_ids) + embd_stimulated_x = torch_rotary_emb(x0, cos_2, sin_2) + assert torch.allclose(embd_x0, embd_stimulated_x) + + # create data + q_shape = (TOTAL_TOKENS, H, D) + q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda") + k_shape = (TOTAL_TOKENS, H, D) + k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda") + cos_shape = (TOTAL_TOKENS, D // 2) + cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") + sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") + + q_ref = torch_rotary_emb(q, cos, sin) + k_ref = torch_rotary_emb(k, cos, sin) + rotary_embedding(q, k, cos, sin) + + assert torch.allclose(q, q_ref, atol=1e-4, rtol=1e-4) + assert torch.allclose(k, k_ref, atol=1e-4, rtol=1e-4) + + +if __name__ == "__main__": + test_rotary_emb(4, 64, 32, 64, torch.float32)