mirror of https://github.com/hpcaitech/ColossalAI
[fx]add autoparallel passes (#1121)
* [CLI] add CLI launcher
* Revert "[CLI] add CLI launcher"
This reverts commit df7e6506d4
.
* feature/add autoparallel passes
pull/1123/head
parent
e127b4375b
commit
fcf55777dd
|
@ -0,0 +1,2 @@
|
|||
from .adding_split_node_pass import balanced_split_pass, split_with_split_nodes_pass
|
||||
from .shard_1d_pass import column_shard_linear_pass, row_shard_linear_pass
|
|
@ -0,0 +1,54 @@
|
|||
import torch
|
||||
|
||||
from torch.fx import symbolic_trace
|
||||
from torch.fx.node import Node
|
||||
from torch.fx.passes.split_module import split_module
|
||||
|
||||
|
||||
def pipe_split():
|
||||
pass
|
||||
|
||||
|
||||
def balanced_split_pass(gm: torch.fx.GraphModule, pp_size: int):
|
||||
mod_graph = gm.graph
|
||||
total_param_amount = 0
|
||||
for param in mod_graph.owning_module.parameters():
|
||||
total_param_amount += param.numel()
|
||||
params_per_partition = total_param_amount // pp_size
|
||||
accumulate_param_amount = 0
|
||||
for node in mod_graph.nodes:
|
||||
if pp_size <= 1:
|
||||
break
|
||||
if node.op == "call_module":
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
for param in target_module.parameters():
|
||||
accumulate_param_amount += param.numel()
|
||||
if accumulate_param_amount >= params_per_partition:
|
||||
accumulate_param_amount = 0
|
||||
pp_size -= 1
|
||||
with mod_graph.inserting_after(node):
|
||||
split_node = mod_graph.create_node('call_function', pipe_split)
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
||||
def split_with_split_nodes_pass(annotated_gm: torch.fx.GraphModule):
|
||||
part_idx = 0
|
||||
|
||||
def split_callback(n: torch.fx.Node):
|
||||
nonlocal part_idx
|
||||
if (n.op, n.target) == ('call_function', pipe_split):
|
||||
part_idx += 1
|
||||
return part_idx
|
||||
|
||||
split_mod = split_module(annotated_gm, None, split_callback)
|
||||
split_submodules = []
|
||||
for name, submodule in split_mod.named_modules():
|
||||
if isinstance(submodule, torch.fx.GraphModule):
|
||||
for node in submodule.graph.nodes:
|
||||
if (node.op, node.target) == ('call_function', pipe_split):
|
||||
submodule.graph.erase_node(node)
|
||||
submodule.recompile()
|
||||
split_submodules.append(submodule)
|
||||
|
||||
return split_mod, split_submodules
|
|
@ -0,0 +1,120 @@
|
|||
import torch
|
||||
from torch.fx.node import map_arg
|
||||
from torch.fx.node import Node
|
||||
from torch.fx.passes.split_module import split_module
|
||||
|
||||
import colossalai
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
|
||||
def all_gather_function(input_):
|
||||
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
||||
tensor_list[rank] = input_
|
||||
group = gpc.get_group(ParallelMode.PARALLEL_1D)
|
||||
torch.distributed.all_gather(tensor_list, input_, group=group)
|
||||
output = torch.cat(tensor_list, dim=-1).contiguous()
|
||||
return output
|
||||
|
||||
|
||||
def all_reduce_function(input_):
|
||||
if gpc.get_world_size(ParallelMode.PARALLEL_1D) == 1:
|
||||
return input_
|
||||
torch.distributed.all_reduce(input_, group=gpc.get_group(ParallelMode.PARALLEL_1D))
|
||||
return input_
|
||||
|
||||
|
||||
def weight_split(weight, dim):
|
||||
#TODO: this function will be refactored by using ColoTensor dist_spec when a stable reshaper feature is ready to use.
|
||||
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
|
||||
shape = weight.shape
|
||||
length = shape[dim] // num_partition
|
||||
sharded_weight_list = []
|
||||
for i in range(num_partition):
|
||||
sharded_weight_list.append(weight.narrow(dim, i * length, length))
|
||||
return sharded_weight_list[gpc.get_local_rank(ParallelMode.PARALLEL_1D)]
|
||||
|
||||
|
||||
def replace_all_uses_except_replaced(node, replace_node):
|
||||
"""
|
||||
Replace all uses of ``node`` in the Graph with the Node ``replace_node``,
|
||||
except the user of ``node`` is ``replace_node``.
|
||||
|
||||
Args:
|
||||
|
||||
replace_node (Node): The node to replace all uses of ``node`` with.
|
||||
|
||||
Returns:
|
||||
|
||||
The list of Nodes on which this change was made.
|
||||
"""
|
||||
to_process = list(node.users)
|
||||
for use_node in to_process:
|
||||
if use_node == replace_node:
|
||||
continue
|
||||
|
||||
def may_replace_node(n):
|
||||
if n == node:
|
||||
return replace_node
|
||||
else:
|
||||
return n
|
||||
|
||||
new_args = map_arg(use_node.args, may_replace_node)
|
||||
new_kwargs = map_arg(use_node.kwargs, may_replace_node)
|
||||
use_node._args = new_args
|
||||
use_node._kwargs = new_kwargs
|
||||
for old_use in use_node._input_nodes.keys():
|
||||
old_use.users.pop(use_node)
|
||||
use_node._input_nodes = {}
|
||||
map_arg(use_node._args, lambda n: use_node._input_nodes.setdefault(n))
|
||||
map_arg(use_node._kwargs, lambda n: use_node._input_nodes.setdefault(n))
|
||||
for new_use in use_node._input_nodes.keys():
|
||||
new_use.users.setdefault(use_node)
|
||||
return to_process
|
||||
|
||||
|
||||
def column_shard_linear_pass(gm: torch.fx.GraphModule):
|
||||
mod_graph = gm.graph
|
||||
for node in mod_graph.nodes:
|
||||
if node.op == "call_module":
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
if isinstance(target_module, torch.nn.Linear):
|
||||
target_module.weight.data = weight_split(target_module.weight.data, dim=0)
|
||||
if target_module.bias is not None:
|
||||
target_module.bias.data = weight_split(target_module.bias.data, dim=0)
|
||||
|
||||
# inserting communication node after the sharded linear node
|
||||
with mod_graph.inserting_after(node):
|
||||
new_node = mod_graph.create_node('call_function', all_gather_function, args=(node,))
|
||||
replace_all_uses_except_replaced(node, new_node)
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
||||
def row_shard_linear_pass(gm: torch.fx.GraphModule):
|
||||
mod_graph = gm.graph
|
||||
for node in mod_graph.nodes:
|
||||
if node.op == "call_module":
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
if isinstance(target_module, torch.nn.Linear):
|
||||
target_module.weight.data = weight_split(target_module.weight.data, dim=-1)
|
||||
|
||||
# insert input sharding node before the sharded linear node
|
||||
with mod_graph.inserting_before(node):
|
||||
input_node_list = list(node._input_nodes.keys())
|
||||
assert len(input_node_list) == 1, 'linear forward must have and only have one input tensor.'
|
||||
input_node = input_node_list[0]
|
||||
new_input_node = mod_graph.create_node('call_function', weight_split, args=(input_node, -1))
|
||||
replace_all_uses_except_replaced(input_node, new_input_node)
|
||||
|
||||
# inserting communication node after the sharded linear node
|
||||
with mod_graph.inserting_after(node):
|
||||
new_node = mod_graph.create_node('call_function', all_reduce_function, args=(node,))
|
||||
replace_all_uses_except_replaced(node, new_node)
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
||||
#TODO: add elementwise op process pass, then we can try to use column and row mixed strategy.
|
|
@ -0,0 +1,63 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from torch.fx import symbolic_trace
|
||||
from colossalai.fx.passes import column_shard_linear_pass
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(dim, dim)
|
||||
self.linear2 = torch.nn.Linear(dim, dim)
|
||||
self.linear3 = torch.nn.Linear(dim, dim)
|
||||
self.linear4 = torch.nn.Linear(dim, dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
x = self.linear3(x)
|
||||
x = self.linear4(x)
|
||||
return x
|
||||
|
||||
|
||||
CONFIG = dict(parallel=dict(tensor=dict(mode='1d', size=2)))
|
||||
|
||||
|
||||
def check_layer(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
input_tensor = torch.rand(2, 16).cuda()
|
||||
model = MLP(16).cuda()
|
||||
symbolic_traced = symbolic_trace(model)
|
||||
output = model(input_tensor)
|
||||
splitted_gm = column_shard_linear_pass(symbolic_traced)
|
||||
new_output = splitted_gm(input_tensor)
|
||||
|
||||
assert output.equal(new_output)
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_1d():
|
||||
world_size = 2
|
||||
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d()
|
Loading…
Reference in New Issue