mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] Patch meta information of `torch.tanh()` and `torch.nn.Dropout` (#2773)
* [autoparallel] tanh meta information * [autoparallel] remove redundant code * [autoparallel] patch meta information of torch.nn.Dropoutpull/2863/head
parent
34ca324b0d
commit
fcc4097efa
|
@ -1,111 +1,59 @@
|
|||
from typing import List, Tuple
|
||||
from typing import Callable, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
from colossalai.fx.profiler.opcount import elementwise_flop_counter
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ["relu_meta_info"]
|
||||
__all__ = ["elementwise_meta_info"]
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.ReLU)
|
||||
def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.ReLU metainfo generator
|
||||
The aten graph of torch.nn.ReLU is
|
||||
graph():
|
||||
%input_2 : [#users=1] = placeholder[target=placeholder](default=)
|
||||
%relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {})
|
||||
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {})
|
||||
%threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
|
||||
def elementwise_meta_info(temp_mem_scale: float = 0, buffer_mem_scale: float = 0) -> Callable:
|
||||
"""This is a function to create the meta information generator for elementwise operations
|
||||
|
||||
Args:
|
||||
temp_mem_scale (float, optional): temp memory scaling factor for backward. Defaults to 0.
|
||||
buffer_mem_scale (float, optional): buffer memory scaling factor for forward. Defaults to 0.
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
Callable: meta information generator
|
||||
"""
|
||||
|
||||
input_tensor = args[0].data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
is_inplace = kwargs.get("inplace", False)
|
||||
|
||||
# construct input args for forward
|
||||
fwd_in_args = [input_tensor]
|
||||
|
||||
# construct input args for backward
|
||||
bwd_in_args = [output_tensor]
|
||||
|
||||
# calculate cost
|
||||
# the fwd op with compute cost is relu.default
|
||||
# the bwd op with compute cost is threshold_backward
|
||||
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,))
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,))
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# NOTE: the inplace ReLU don't have forward memory cost
|
||||
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
||||
fwd_memory_cost = MemoryCost(
|
||||
activation=activation_size(input_tensor) if is_inplace else activation_size([output_tensor, input_tensor]),
|
||||
parameter=0,
|
||||
temp=0,
|
||||
buffer=0)
|
||||
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0)
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
# store fwd_in, fwd_buffer, fwd_out
|
||||
# NOTE: It might seems a little bit weird here, we just want to align it with the older version
|
||||
# of MetaInfoProp. In the future we might modify this part to make it clearer.
|
||||
fwd_in = []
|
||||
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
|
||||
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.Softmax)
|
||||
@meta_register.register(torch.nn.functional.softmax)
|
||||
def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""torch.nn.Softmax metainfo generator
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
input_tensor = next(
|
||||
filter(
|
||||
lambda x:
|
||||
(x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim',
|
||||
args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
softmax_dim = next(filter(lambda x: x.name == 'softmax_dim', args)).data
|
||||
|
||||
# calculate cost
|
||||
is_inplace = 1 if kwargs.get('inplace', False) else 0
|
||||
|
||||
flop_counter = elementwise_flop_counter(1, 0)
|
||||
# calculate compute cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten._softmax.default]([input_tensor], [output_tensor])
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten._softmax_backward_data.default]([output_tensor], [input_tensor])
|
||||
fwd_compute_cost = flop_counter([input_tensor], [output_tensor])
|
||||
bwd_compute_cost = flop_counter([output_tensor], [input_tensor])
|
||||
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
|
||||
bwd=bwd_compute_cost,
|
||||
total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
|
||||
# NOTE: if in_place is True, we will not create a new tensor in forward
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) * (2 - is_inplace),
|
||||
parameter=0,
|
||||
temp=0,
|
||||
buffer=0)
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor),
|
||||
buffer=activation_size(input_tensor) * buffer_mem_scale)
|
||||
|
||||
# temp_mem_scale is for situation like softmax backward
|
||||
# the buffer will be removed during backward phase
|
||||
bwd_memory_cost = MemoryCost(
|
||||
activation=activation_size(input_tensor) - activation_size(input_tensor) * buffer_mem_scale,
|
||||
parameter=0,
|
||||
temp=activation_size(input_tensor),
|
||||
temp=activation_size(input_tensor) * temp_mem_scale + activation_size(input_tensor) * buffer_mem_scale,
|
||||
buffer=0)
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
|
@ -122,3 +70,16 @@ def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
|
|||
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|
||||
|
||||
return meta_func
|
||||
|
||||
|
||||
# register meta information
|
||||
# (0, 0)
|
||||
meta_register.register([torch.nn.ReLU, torch.nn.functional.relu, torch.tanh])(elementwise_meta_info(0, 0))
|
||||
|
||||
# (1, 0)
|
||||
meta_register.register([torch.nn.Softmax, torch.nn.functional.softmax])(elementwise_meta_info(1, 0))
|
||||
|
||||
# (0, 0.25) for dropout, the buffer is in bool type so that the buffer memory cost is 0.25 times of input tensor
|
||||
meta_register.register([torch.nn.Dropout, torch.nn.functional.dropout])(elementwise_meta_info(0, 0.25))
|
||||
|
|
|
@ -17,51 +17,15 @@ from colossalai.utils import free_port
|
|||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results
|
||||
|
||||
|
||||
def _ReLU_module_mem_test(rank, world_size, port):
|
||||
"""This function is for ReLU memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.ReLU()).cuda()
|
||||
input = torch.rand(4, 128, 64, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of target node strategies
|
||||
strategy_number = 1
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_ReLU_meta_concrete_info_match():
|
||||
world_size = 4
|
||||
run_func_module = partial(_ReLU_module_mem_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")
|
||||
def test_sofmax_meta_info():
|
||||
meta_func = meta_register.get(torch.nn.functional.softmax)
|
||||
@parameterize('func', [
|
||||
torch.nn.functional.softmax,
|
||||
torch.nn.functional.relu,
|
||||
torch.tanh,
|
||||
torch.nn.functional.dropout,
|
||||
])
|
||||
def test_activation_meta_info(func):
|
||||
meta_func = meta_register.get(func)
|
||||
# construct meta tensors
|
||||
input_tensor = torch.rand(256, 1024, device="meta")
|
||||
output_tensor = torch.rand(256, 1024, device="meta")
|
||||
|
@ -87,7 +51,7 @@ def test_sofmax_meta_info():
|
|||
# fwd
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
output_real_tensor = torch.nn.functional.softmax(input_real_tensor, dim=softmax_dim)
|
||||
output_real_tensor = func(input_real_tensor)
|
||||
fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
|
||||
fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
|
||||
|
||||
|
@ -104,5 +68,4 @@ def test_sofmax_meta_info():
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_ReLU_meta_concrete_info_match()
|
||||
test_sofmax_meta_info()
|
||||
test_activation_meta_info()
|
||||
|
|
Loading…
Reference in New Issue