[autoparallel] Patch meta information of `torch.tanh()` and `torch.nn.Dropout` (#2773)

* [autoparallel] tanh meta information

* [autoparallel] remove redundant code

* [autoparallel] patch meta information of torch.nn.Dropout
pull/2863/head
Boyuan Yao 2023-02-22 10:27:59 +08:00 committed by GitHub
parent 34ca324b0d
commit fcc4097efa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 68 additions and 144 deletions

View File

@ -1,111 +1,59 @@
from typing import List, Tuple
from typing import Callable, List, Tuple
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.fx.profiler.opcount import elementwise_flop_counter
from ..registry import meta_register
__all__ = ["relu_meta_info"]
__all__ = ["elementwise_meta_info"]
@meta_register.register(torch.nn.ReLU)
def relu_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.ReLU metainfo generator
The aten graph of torch.nn.ReLU is
graph():
%input_2 : [#users=1] = placeholder[target=placeholder](default=)
%relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%input_2,), kwargs = {})
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%relu_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {})
%threshold_backward_default : [#users=1] = call_function[target=torch.ops.aten.threshold_backward.default](args = (%zeros_like_default, %detach_default, None), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%threshold_backward_default,), kwargs = {})
%detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {})
def elementwise_meta_info(temp_mem_scale: float = 0, buffer_mem_scale: float = 0) -> Callable:
"""This is a function to create the meta information generator for elementwise operations
Args:
temp_mem_scale (float, optional): temp memory scaling factor for backward. Defaults to 0.
buffer_mem_scale (float, optional): buffer memory scaling factor for forward. Defaults to 0.
Returns:
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
Callable: meta information generator
"""
input_tensor = args[0].data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
is_inplace = kwargs.get("inplace", False)
# construct input args for forward
fwd_in_args = [input_tensor]
# construct input args for backward
bwd_in_args = [output_tensor]
# calculate cost
# the fwd op with compute cost is relu.default
# the bwd op with compute cost is threshold_backward
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten.relu.default](fwd_in_args, (output_tensor,))
bwd_compute_cost = flop_mapping[torch.ops.aten.threshold_backward.default](bwd_in_args, (input_tensor,))
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: the inplace ReLU don't have forward memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(
activation=activation_size(input_tensor) if is_inplace else activation_size([output_tensor, input_tensor]),
parameter=0,
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor), parameter=0, temp=0, buffer=0)
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in, fwd_buffer, fwd_out
# NOTE: It might seems a little bit weird here, we just want to align it with the older version
# of MetaInfoProp. In the future we might modify this part to make it clearer.
fwd_in = []
fwd_buffer = [torch.zeros_like(output_tensor, device='meta')]
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
@meta_register.register(torch.nn.Softmax)
@meta_register.register(torch.nn.functional.softmax)
def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.nn.Softmax metainfo generator
Returns:
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
"""
def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
input_tensor = next(
filter(
lambda x:
(x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != 'softmax_dim',
args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
softmax_dim = next(filter(lambda x: x.name == 'softmax_dim', args)).data
# calculate cost
is_inplace = 1 if kwargs.get('inplace', False) else 0
flop_counter = elementwise_flop_counter(1, 0)
# calculate compute cost
fwd_compute_cost = flop_mapping[torch.ops.aten._softmax.default]([input_tensor], [output_tensor])
bwd_compute_cost = flop_mapping[torch.ops.aten._softmax_backward_data.default]([output_tensor], [input_tensor])
fwd_compute_cost = flop_counter([input_tensor], [output_tensor])
bwd_compute_cost = flop_counter([output_tensor], [input_tensor])
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor]),
# NOTE: if in_place is True, we will not create a new tensor in forward
fwd_memory_cost = MemoryCost(activation=activation_size(input_tensor) * (2 - is_inplace),
parameter=0,
temp=0,
buffer=0)
bwd_memory_cost = MemoryCost(activation=activation_size(input_tensor),
buffer=activation_size(input_tensor) * buffer_mem_scale)
# temp_mem_scale is for situation like softmax backward
# the buffer will be removed during backward phase
bwd_memory_cost = MemoryCost(
activation=activation_size(input_tensor) - activation_size(input_tensor) * buffer_mem_scale,
parameter=0,
temp=activation_size(input_tensor),
temp=activation_size(input_tensor) * temp_mem_scale + activation_size(input_tensor) * buffer_mem_scale,
buffer=0)
# total cost is the sum of forward and backward cost
@ -122,3 +70,16 @@ def softmax_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
return meta_func
# register meta information
# (0, 0)
meta_register.register([torch.nn.ReLU, torch.nn.functional.relu, torch.tanh])(elementwise_meta_info(0, 0))
# (1, 0)
meta_register.register([torch.nn.Softmax, torch.nn.functional.softmax])(elementwise_meta_info(1, 0))
# (0, 0.25) for dropout, the buffer is in bool type so that the buffer memory cost is 0.25 times of input tensor
meta_register.register([torch.nn.Dropout, torch.nn.functional.dropout])(elementwise_meta_info(0, 0.25))

View File

@ -17,51 +17,15 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results
def _ReLU_module_mem_test(rank, world_size, port):
"""This function is for ReLU memory test
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
Args:
Args:
rank: device rank
bias: indicate whether conv module need bias
world_size: number of devices
port: port for initializing process group
"""
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = nn.Sequential(nn.ReLU()).cuda()
input = torch.rand(4, 128, 64, 64).cuda()
input.requires_grad = True
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of target node in computation graph
node_index = 1
# total number of target node strategies
strategy_number = 1
mem_test_for_node_strategy(rank=rank,
model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input],
meta_arg_names=['input'])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_ReLU_meta_concrete_info_match():
world_size = 4
run_func_module = partial(_ReLU_module_mem_test, world_size=world_size, port=free_port())
mp.spawn(run_func_module, nprocs=world_size)
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")
def test_sofmax_meta_info():
meta_func = meta_register.get(torch.nn.functional.softmax)
@parameterize('func', [
torch.nn.functional.softmax,
torch.nn.functional.relu,
torch.tanh,
torch.nn.functional.dropout,
])
def test_activation_meta_info(func):
meta_func = meta_register.get(func)
# construct meta tensors
input_tensor = torch.rand(256, 1024, device="meta")
output_tensor = torch.rand(256, 1024, device="meta")
@ -87,7 +51,7 @@ def test_sofmax_meta_info():
# fwd
torch.cuda.reset_peak_memory_stats()
mem_stamp0 = torch.cuda.memory_allocated()
output_real_tensor = torch.nn.functional.softmax(input_real_tensor, dim=softmax_dim)
output_real_tensor = func(input_real_tensor)
fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
@ -104,5 +68,4 @@ def test_sofmax_meta_info():
if __name__ == '__main__':
# test_ReLU_meta_concrete_info_match()
test_sofmax_meta_info()
test_activation_meta_info()