mirror of https://github.com/hpcaitech/ColossalAI
[lazy] support init on cuda (#4269)
* [lazy] support init on cuda * [test] update lazy init test * [test] fix transformer versionpull/4302/head
parent
4b977541a8
commit
fc5cef2c79
|
@ -1,3 +1,4 @@
|
||||||
|
from contextlib import contextmanager
|
||||||
from types import MethodType
|
from types import MethodType
|
||||||
from typing import Callable, Dict, Optional, Union
|
from typing import Callable, Dict, Optional, Union
|
||||||
|
|
||||||
|
@ -61,12 +62,15 @@ class _MyTensor(Tensor):
|
||||||
"""
|
"""
|
||||||
_pre_op_fn: Callable[['LazyTensor'], None] = lambda *args: None
|
_pre_op_fn: Callable[['LazyTensor'], None] = lambda *args: None
|
||||||
|
|
||||||
|
default_device: Optional[torch.device] = None
|
||||||
|
|
||||||
def __new__(cls, func, *args, concrete_data=None, **kwargs) -> '_MyTensor':
|
def __new__(cls, func, *args, concrete_data=None, **kwargs) -> '_MyTensor':
|
||||||
cls._pre_op_fn()
|
cls._pre_op_fn()
|
||||||
if concrete_data is not None:
|
if concrete_data is not None:
|
||||||
# uniform api as LazyTensor
|
# uniform api as LazyTensor
|
||||||
data = concrete_data
|
data = concrete_data
|
||||||
else:
|
else:
|
||||||
|
kwargs['device'] = cls.default_device
|
||||||
data = func(*args, **kwargs)
|
data = func(*args, **kwargs)
|
||||||
return Tensor._make_subclass(cls, data, require_grad=data.requires_grad)
|
return Tensor._make_subclass(cls, data, require_grad=data.requires_grad)
|
||||||
|
|
||||||
|
@ -142,6 +146,8 @@ class LazyTensor(torch.Tensor):
|
||||||
_meta_data: Optional[MetaTensor] = None # shape, dtype, device
|
_meta_data: Optional[MetaTensor] = None # shape, dtype, device
|
||||||
_pre_op_fn: Callable[['LazyTensor'], None] = lambda *args: None
|
_pre_op_fn: Callable[['LazyTensor'], None] = lambda *args: None
|
||||||
|
|
||||||
|
default_device: Optional[torch.device] = None
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def __new__(cls, func, *args, meta_data=None, concrete_data=None, **kwargs):
|
def __new__(cls, func, *args, meta_data=None, concrete_data=None, **kwargs):
|
||||||
if concrete_data is not None:
|
if concrete_data is not None:
|
||||||
|
@ -159,6 +165,8 @@ class LazyTensor(torch.Tensor):
|
||||||
return r
|
return r
|
||||||
|
|
||||||
def __init__(self, func, *args, meta_data=None, concrete_data=None, **kwargs):
|
def __init__(self, func, *args, meta_data=None, concrete_data=None, **kwargs):
|
||||||
|
if func.__name__ in _NORMAL_FACTORY:
|
||||||
|
kwargs = {**kwargs, 'device': LazyTensor.default_device}
|
||||||
self._factory_method = (func, args, kwargs) # (func, args, kwargs)
|
self._factory_method = (func, args, kwargs) # (func, args, kwargs)
|
||||||
self._op_buffer = [] # (func, args, kwargs, replace)
|
self._op_buffer = [] # (func, args, kwargs, replace)
|
||||||
self._materialized_data: Optional[torch.Tensor] = concrete_data # materialized data
|
self._materialized_data: Optional[torch.Tensor] = concrete_data # materialized data
|
||||||
|
@ -206,16 +214,11 @@ class LazyTensor(torch.Tensor):
|
||||||
if self._materialized_data is None:
|
if self._materialized_data is None:
|
||||||
# apply factory method
|
# apply factory method
|
||||||
func, args, kwargs = self._factory_method
|
func, args, kwargs = self._factory_method
|
||||||
|
|
||||||
# apply cached sequence
|
# apply cached sequence
|
||||||
self._pre_op_fn()
|
self._pre_op_fn()
|
||||||
|
|
||||||
try:
|
init_val = func(*tree_map(self._replace_with_materialized, args),
|
||||||
init_val = func(*tree_map(self._replace_with_materialized, args),
|
**tree_map(self._replace_with_materialized, kwargs))
|
||||||
**tree_map(self._replace_with_materialized, kwargs))
|
|
||||||
except TypeError as e:
|
|
||||||
print(f'init fn: {func.__name__}')
|
|
||||||
raise e
|
|
||||||
|
|
||||||
self._materialized_data = self._rerun_ops(init_val)
|
self._materialized_data = self._rerun_ops(init_val)
|
||||||
return self._materialized_data
|
return self._materialized_data
|
||||||
|
@ -305,6 +308,7 @@ class LazyTensor(torch.Tensor):
|
||||||
else:
|
else:
|
||||||
# out of place op, create new lazy tensor
|
# out of place op, create new lazy tensor
|
||||||
fn = lambda *a, **kw: func(*a, **kw) if i is None else func(*a, **kw)[i]
|
fn = lambda *a, **kw: func(*a, **kw) if i is None else func(*a, **kw)[i]
|
||||||
|
fn.__name__ = func.__name__
|
||||||
lazy_y = LazyTensor(fn, *args, meta_data=y, **kwargs)
|
lazy_y = LazyTensor(fn, *args, meta_data=y, **kwargs)
|
||||||
return lazy_y
|
return lazy_y
|
||||||
elif type(y) is Tensor:
|
elif type(y) is Tensor:
|
||||||
|
@ -435,14 +439,21 @@ class LazyInitContext:
|
||||||
"""
|
"""
|
||||||
_replaced: bool = False
|
_replaced: bool = False
|
||||||
|
|
||||||
def __init__(self, tensor_cls: Union[_MyTensor, LazyTensor] = LazyTensor):
|
def __init__(self,
|
||||||
|
tensor_cls: Union[_MyTensor, LazyTensor] = LazyTensor,
|
||||||
|
default_device: Optional[Union[torch.device, str, int]] = None):
|
||||||
|
assert tensor_cls is LazyTensor or tensor_cls is _MyTensor
|
||||||
self.overrides = {}
|
self.overrides = {}
|
||||||
self.tensor_cls = tensor_cls
|
self.tensor_cls = tensor_cls
|
||||||
|
self.old_default_device = LazyTensor.default_device
|
||||||
|
self.default_device = default_device
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
if LazyInitContext._replaced:
|
if LazyInitContext._replaced:
|
||||||
raise RuntimeError(f'LazyInitContext is not reentrant')
|
raise RuntimeError(f'LazyInitContext is not reentrant')
|
||||||
LazyInitContext._replaced = True
|
LazyInitContext._replaced = True
|
||||||
|
self.old_default_device = self.tensor_cls.default_device
|
||||||
|
self.tensor_cls.default_device = self.default_device
|
||||||
|
|
||||||
def wrap_factory_method(target):
|
def wrap_factory_method(target):
|
||||||
# factory functions (eg. torch.empty())
|
# factory functions (eg. torch.empty())
|
||||||
|
@ -518,6 +529,7 @@ class LazyInitContext:
|
||||||
setattr(torch, name, wrapper)
|
setattr(torch, name, wrapper)
|
||||||
|
|
||||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
self.tensor_cls.default_device = self.old_default_device
|
||||||
LazyInitContext._replaced = False
|
LazyInitContext._replaced = False
|
||||||
for name, (wrapper, orig) in self.overrides.items():
|
for name, (wrapper, orig) in self.overrides.items():
|
||||||
setattr(torch, name, orig)
|
setattr(torch, name, orig)
|
||||||
|
|
|
@ -4,7 +4,7 @@ pytest
|
||||||
coverage==7.2.3
|
coverage==7.2.3
|
||||||
git+https://github.com/hpcaitech/pytest-testmon
|
git+https://github.com/hpcaitech/pytest-testmon
|
||||||
torchvision
|
torchvision
|
||||||
transformers
|
transformers==4.30.2
|
||||||
timm
|
timm
|
||||||
titans
|
titans
|
||||||
torchaudio
|
torchaudio
|
||||||
|
|
|
@ -61,14 +61,18 @@ def assert_forward_equal(m1: torch.nn.Module, m2: torch.nn.Module, data_gen_fn:
|
||||||
f'{m1.__class__.__name__} has inconsistent outputs, {out1} vs {out2}'
|
f'{m1.__class__.__name__} has inconsistent outputs, {out1} vs {out2}'
|
||||||
|
|
||||||
|
|
||||||
def check_lazy_init(entry: TestingEntry, seed: int = 42, verbose: bool = False, check_forward: bool = False) -> None:
|
def check_lazy_init(entry: TestingEntry,
|
||||||
|
seed: int = 42,
|
||||||
|
verbose: bool = False,
|
||||||
|
check_forward: bool = False,
|
||||||
|
default_device: str = 'cpu') -> None:
|
||||||
model_fn, data_gen_fn, output_transform_fn, _, model_attr = entry
|
model_fn, data_gen_fn, output_transform_fn, _, model_attr = entry
|
||||||
_MyTensor._pre_op_fn = lambda *args: set_seed(seed)
|
_MyTensor._pre_op_fn = lambda *args: set_seed(seed)
|
||||||
LazyTensor._pre_op_fn = lambda *args: set_seed(seed)
|
LazyTensor._pre_op_fn = lambda *args: set_seed(seed)
|
||||||
ctx = LazyInitContext(tensor_cls=_MyTensor)
|
ctx = LazyInitContext(tensor_cls=_MyTensor, default_device=default_device)
|
||||||
with ctx:
|
with ctx:
|
||||||
model = model_fn()
|
model = model_fn()
|
||||||
ctx = LazyInitContext()
|
ctx = LazyInitContext(default_device=default_device)
|
||||||
with ctx:
|
with ctx:
|
||||||
deferred_model = model_fn()
|
deferred_model = model_fn()
|
||||||
copied_deferred_model = deepcopy(deferred_model)
|
copied_deferred_model = deepcopy(deferred_model)
|
||||||
|
|
|
@ -6,13 +6,14 @@ from tests.kit.model_zoo import model_zoo
|
||||||
|
|
||||||
@pytest.mark.skipif(not SUPPORT_LAZY, reason='requires torch >= 1.12.0')
|
@pytest.mark.skipif(not SUPPORT_LAZY, reason='requires torch >= 1.12.0')
|
||||||
@pytest.mark.parametrize('subset', ['torchvision', 'diffusers', 'timm', 'transformers', 'torchaudio', 'deepfm', 'dlrm'])
|
@pytest.mark.parametrize('subset', ['torchvision', 'diffusers', 'timm', 'transformers', 'torchaudio', 'deepfm', 'dlrm'])
|
||||||
def test_torchvision_models_lazy_init(subset):
|
@pytest.mark.parametrize('default_device', ['cpu', 'cuda'])
|
||||||
|
def test_torchvision_models_lazy_init(subset, default_device):
|
||||||
sub_model_zoo = model_zoo.get_sub_registry(subset)
|
sub_model_zoo = model_zoo.get_sub_registry(subset)
|
||||||
for name, entry in sub_model_zoo.items():
|
for name, entry in sub_model_zoo.items():
|
||||||
# TODO(ver217): lazy init does not support weight norm, skip these models
|
# TODO(ver217): lazy init does not support weight norm, skip these models
|
||||||
if name in ('torchaudio_wav2vec2_base', 'torchaudio_hubert_base') or name.startswith('transformers_llama'):
|
if name in ('torchaudio_wav2vec2_base', 'torchaudio_hubert_base') or name.startswith('transformers_llama'):
|
||||||
continue
|
continue
|
||||||
check_lazy_init(entry, verbose=True)
|
check_lazy_init(entry, verbose=True, default_device=default_device)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue