mirror of https://github.com/hpcaitech/ColossalAI
[test] merge zero optim tests (#428)
parent
f0d6e2208b
commit
f9c762df85
|
@ -12,11 +12,12 @@ from colossalai.zero.sharded_model import ShardedModelV2
|
||||||
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from colossalai.nn.optimizer import CPUAdam
|
||||||
|
|
||||||
from common import CONFIG, check_sharded_params_padding
|
from common import CONFIG, check_sharded_params_padding
|
||||||
|
|
||||||
|
|
||||||
def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
def _run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
||||||
model.train()
|
model.train()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||||
|
@ -34,13 +35,17 @@ def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, cpu_offload, shard_strategy):
|
def _run_dist(rank, world_size, port, cpu_offload, shard_strategy, use_cpuadam):
|
||||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
||||||
shard_strategy = shard_strategy()
|
shard_strategy = shard_strategy()
|
||||||
|
|
||||||
|
if use_cpuadam and cpu_offload is False:
|
||||||
|
return
|
||||||
|
|
||||||
for model_name in test_models:
|
for model_name in test_models:
|
||||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
model, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
model, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||||
model = model(checkpoint=True).cuda()
|
model = model(checkpoint=True).cuda()
|
||||||
zero_model = ShardedModelV2(copy.deepcopy(model),
|
zero_model = ShardedModelV2(copy.deepcopy(model),
|
||||||
shard_strategy,
|
shard_strategy,
|
||||||
|
@ -48,33 +53,59 @@ def run_dist(rank, world_size, port, cpu_offload, shard_strategy):
|
||||||
if dist.get_world_size() > 1:
|
if dist.get_world_size() > 1:
|
||||||
model = DDP(model)
|
model = DDP(model)
|
||||||
lr = 1e-3
|
lr = 1e-3
|
||||||
optim = optimizer_class(model.parameters(), lr=lr)
|
if use_cpuadam:
|
||||||
sharded_optim = ShardedOptimizerV2(zero_model,
|
optim = torch.optim.Adam(model.parameters(), lr=lr)
|
||||||
optimizer_class,
|
sharded_optim = ShardedOptimizerV2(zero_model, CPUAdam, cpu_offload=cpu_offload, initial_scale=2**5, lr=lr)
|
||||||
cpu_offload=cpu_offload,
|
else:
|
||||||
initial_scale=2**5,
|
optim = optimizer_class(model.parameters(), lr=lr)
|
||||||
lr=lr)
|
sharded_optim = ShardedOptimizerV2(zero_model,
|
||||||
|
optimizer_class,
|
||||||
|
cpu_offload=cpu_offload,
|
||||||
|
initial_scale=2**5,
|
||||||
|
lr=lr)
|
||||||
for i, (data, label) in enumerate(train_dataloader):
|
for i, (data, label) in enumerate(train_dataloader):
|
||||||
if i > 2:
|
#FIXME() if i > 5, the unittest will fail
|
||||||
|
if i > 3:
|
||||||
break
|
break
|
||||||
data, label = data.cuda(), label.cuda()
|
data, label = data.cuda(), label.cuda()
|
||||||
run_step(model, optim, data, label, criterion, False)
|
_run_step(model, optim, data, label, criterion, False)
|
||||||
run_step(zero_model, sharded_optim, data, label, criterion, False)
|
_run_step(zero_model, sharded_optim, data, label, criterion, False)
|
||||||
check_sharded_params_padding(model, zero_model, loose=True)
|
check_sharded_params_padding(model, zero_model, loose=True)
|
||||||
|
|
||||||
|
|
||||||
|
# use_cpuadam = True can be used with cpu_offload = False
|
||||||
|
@pytest.mark.dist
|
||||||
|
@pytest.mark.parametrize("world_size", [1, 2])
|
||||||
|
@pytest.mark.parametrize("cpu_offload", [False])
|
||||||
|
@pytest.mark.parametrize("use_cpuadam", [False])
|
||||||
|
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
|
||||||
|
def test_sharded_optim_v2(world_size, cpu_offload, shard_strategy, use_cpuadam):
|
||||||
|
run_func = partial(_run_dist,
|
||||||
|
world_size=world_size,
|
||||||
|
port=free_port(),
|
||||||
|
cpu_offload=cpu_offload,
|
||||||
|
shard_strategy=shard_strategy,
|
||||||
|
use_cpuadam=use_cpuadam)
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize("world_size", [1, 2])
|
@pytest.mark.parametrize("world_size", [1, 2])
|
||||||
@pytest.mark.parametrize("cpu_offload", [True, False])
|
@pytest.mark.parametrize("cpu_offload", [True])
|
||||||
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
|
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
|
||||||
def test_sharded_optim_v2(world_size, cpu_offload, shard_strategy):
|
@pytest.mark.parametrize("use_cpuadam", [True, False])
|
||||||
run_func = partial(run_dist,
|
def test_sharded_optim_v2_cpu_adam(world_size, cpu_offload, shard_strategy, use_cpuadam):
|
||||||
|
run_func = partial(_run_dist,
|
||||||
world_size=world_size,
|
world_size=world_size,
|
||||||
port=free_port(),
|
port=free_port(),
|
||||||
cpu_offload=cpu_offload,
|
cpu_offload=cpu_offload,
|
||||||
shard_strategy=shard_strategy)
|
shard_strategy=shard_strategy,
|
||||||
|
use_cpuadam=use_cpuadam)
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_sharded_optim_v2(world_size=2, cpu_offload=True, shard_strategy=TensorShardStrategy)
|
test_sharded_optim_v2_cpu_adam(world_size=2,
|
||||||
|
cpu_offload=False,
|
||||||
|
shard_strategy=TensorShardStrategy,
|
||||||
|
use_cpuadam=True)
|
||||||
|
|
|
@ -1,85 +0,0 @@
|
||||||
#!/usr/bin/env python
|
|
||||||
# -*- encoding: utf-8 -*-
|
|
||||||
|
|
||||||
import copy
|
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
import colossalai
|
|
||||||
import pytest
|
|
||||||
import torch
|
|
||||||
import torch.distributed as dist
|
|
||||||
import torch.multiprocessing as mp
|
|
||||||
from colossalai.nn.optimizer import CPUAdam
|
|
||||||
from colossalai.utils import free_port
|
|
||||||
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
|
|
||||||
from colossalai.zero.sharded_model import ShardedModelV2
|
|
||||||
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
||||||
from torch.optim import Adam
|
|
||||||
|
|
||||||
from common import CONFIG, check_sharded_params_padding
|
|
||||||
|
|
||||||
|
|
||||||
def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
|
||||||
model.train()
|
|
||||||
optimizer.zero_grad()
|
|
||||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
||||||
y = model(data)
|
|
||||||
loss = criterion(y, label)
|
|
||||||
loss = loss.float()
|
|
||||||
if isinstance(model, ShardedModelV2):
|
|
||||||
optimizer.backward(loss)
|
|
||||||
else:
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
|
|
||||||
def run_step_no_criterion(model, optimizer, data, label, enable_autocast=False):
|
|
||||||
model.train()
|
|
||||||
optimizer.zero_grad()
|
|
||||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
||||||
loss = model(data, label)
|
|
||||||
if isinstance(model, ShardedModelV2):
|
|
||||||
optimizer.backward(loss)
|
|
||||||
else:
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, shard_strategy):
|
|
||||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
||||||
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
|
||||||
shard_strategy = shard_strategy()
|
|
||||||
for model_name in test_models:
|
|
||||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
||||||
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
|
||||||
model = model(checkpoint=True).cuda()
|
|
||||||
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy, offload_config={'device': 'cpu'})
|
|
||||||
if dist.get_world_size() > 1:
|
|
||||||
model = DDP(model)
|
|
||||||
optim = Adam(model.parameters(), lr=1e-3)
|
|
||||||
sharded_optim = ShardedOptimizerV2(zero_model, CPUAdam, initial_scale=2**5, cpu_offload=True, lr=1e-3)
|
|
||||||
for i, (data, label) in enumerate(train_dataloader):
|
|
||||||
if i > 2:
|
|
||||||
break
|
|
||||||
data, label = data.cuda(), label.cuda()
|
|
||||||
if criterion is None:
|
|
||||||
run_step_no_criterion(model, optim, data, label, False)
|
|
||||||
run_step_no_criterion(zero_model, sharded_optim, data, label, False)
|
|
||||||
else:
|
|
||||||
run_step(model, optim, data, label, criterion, False)
|
|
||||||
run_step(zero_model, sharded_optim, data, label, criterion, False)
|
|
||||||
check_sharded_params_padding(model, zero_model, loose=True)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
|
||||||
@pytest.mark.parametrize("world_size", [1, 2])
|
|
||||||
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
|
|
||||||
def test_sharded_optim_v2(world_size, shard_strategy):
|
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), shard_strategy=shard_strategy)
|
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
test_sharded_optim_v2(world_size=2, shard_strategy=TensorShardStrategy)
|
|
Loading…
Reference in New Issue