[checkpoint] use gather_tensor in checkpoint and update its unit test (#1339)

pull/1340/head
HELSON 2022-07-19 14:15:28 +08:00 committed by GitHub
parent f3ce7b8336
commit f92c100ddd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 209 additions and 91 deletions

View File

@ -262,7 +262,7 @@ class ColoTensor(torch.Tensor):
replicated_t = self.redistribute(dist_spec=ReplicaSpec())
return replicated_t.view(*args)
def size_global(self, args: Optional[int] = None):
def size_global(self, args: Optional[int] = None) -> torch.Size:
"""override the torch buildin size()
the shape passed in must be in a replicate placement.
Returns:

View File

@ -141,9 +141,18 @@ class ProcessGroup:
def rank(self):
return self._rank
def ranks_in_group(self):
return self._rank_list
def world_size(self):
return self._world_size
def tp_rank_list(self):
return self._tp_rank_list
def dp_rank_list(self):
return self._dp_rank_list
def tp_local_rank(self):
return self._rank % self._tp_degree

View File

@ -1,8 +1,8 @@
import torch
import torch.distributed as dist
from colossalai.tensor import ColoTensor, DistSpecManager
from colossalai.tensor import ColoTensor
from colossalai.nn.optimizer import ColossalaiOptimizer
from copy import copy
from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor
from typing import Optional
@ -22,37 +22,52 @@ def save_checkpoint(dire: str,
optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None.
"""
rank = dist.get_rank()
model_state = model.state_dict()
# save the dist context about the tensors in a new dict, while still maintain the original dict.
for k, v in model_state.items():
if isinstance(v, ColoTensor):
gather_tensor(v) # gather shared tensors to rank0
# don't recover tensors in rank0, since the dict is only a copy of model
if rank == 0:
# sanity check
for k, v in model_state.items():
if isinstance(v, ColoTensor):
assert v.save_ready
assert v.is_replicate()
delattr(v, 'save_ready')
# model saving
save_state = {'epoch': epoch, 'model': model_state}
torch.save(save_state, dire + '/epoch_{}_model.pth'.format(epoch))
# delete old dicts
del model_state
# synchronize all the processes
dist.barrier()
mapping = dict()
new_dict = dict()
# save the dist context about the tensors in a new dict, while still maintain the original dict.
for k, v in model.state_dict().items():
if isinstance(v, ColoTensor):
mapping[k] = (v.dist_spec, v.compute_spec)
new_dict[k] = v.to_replicate().detach()
else:
new_dict[k] = v
if dist.get_rank() == 0:
for k, v in new_dict.items():
if isinstance(v, ColoTensor):
assert v.is_replicate()
model_state = {'epoch': epoch, 'model': new_dict}
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
# delete the new dict
del new_dict
optim_state_copy = copy(optimizer.state_dict())
for k, v in optim_state_copy['state'].items():
optim_state = optimizer.state_dict()
for k, v in optim_state['state'].items():
for n, t in v.items():
if isinstance(t, ColoTensor):
t.to_replicate_()
if dist.get_rank() == 0:
model_state = {'epoch': epoch, 'optim': optim_state_copy}
torch.save(model_state, dire + '/epoch_{}_optim.pth'.format(epoch))
del optim_state_copy
mapping[(k, n)] = t.dist_spec
gather_tensor(t)
if rank == 0:
save_state = {'epoch': epoch, 'optim': optim_state}
torch.save(save_state, dire + '/epoch_{}_optim.pth'.format(epoch))
# recover colo tensors in rank0
for k, v in optimizer.state_dict()['state'].items():
for n, t in v.items():
if isinstance(t, ColoTensor):
assert hasattr(t, 'save_ready')
t.set_dist_spec(mapping[(k, n)])
delattr(t, 'save_ready')
del optim_state
del mapping
dist.barrier()
def load_checkpoint(dire,
@ -72,39 +87,42 @@ def load_checkpoint(dire,
optimizer (ColossalaiOptimizer, optional): _description_. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
"""
rank = dist.get_rank()
mapping = dict()
for n, p in model.named_parameters():
if isinstance(p, ColoTensor):
mapping[n] = p.dist_spec
gather_tensor(p)
if rank == 0:
load_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch))
model.load_state_dict(load_state['model'])
dist.barrier()
# scatter loaded parameters
for n, p in model.named_parameters():
if isinstance(p, ColoTensor):
scatter_tensor(p, mapping[n])
if rank == 0:
assert hasattr(p, 'save_ready')
delattr(p, 'save_ready')
del mapping
mapping = dict()
for k, v in model.state_dict().items():
if isinstance(v, ColoTensor):
mapping[k] = (v.dist_spec, v.compute_spec)
v.to_replicate_()
for k, v in optimizer.state_dict()['state'].items():
for n, t in v.items():
if isinstance(t, ColoTensor):
mapping[(k, n)] = t.dist_spec
gather_tensor(t)
model_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch))
model.load_state_dict(model_state['model'])
if rank == 0:
colo_checkpoint = torch.load(dire + '/epoch_{}_optim.pth'.format(epoch))
optimizer.load_state_dict(colo_checkpoint['optim'])
dist.barrier()
# reset tensors to original dist spec.
with DistSpecManager.no_grad():
for k, v in model.state_dict().items():
if isinstance(v, ColoTensor):
v.set_tensor_spec(*mapping[k])
for k, v in optimizer.state_dict()['state'].items():
for n, t in v.items():
if isinstance(t, ColoTensor):
scatter_tensor(t, mapping[(k, n)])
del mapping
mapping = dict()
for k, v in optimizer.state_dict()['state'].items():
for n, t in v.items():
if isinstance(t, ColoTensor):
mapping[(k, n)] = (t.dist_spec, t.compute_spec)
t.to_replicate_()
colo_checkpoint = torch.load(dire + '/epoch_{}_optim.pth'.format(epoch))
optimizer.load_state_dict(colo_checkpoint['optim'])
for k, v in optimizer.state_dict()['state'].items():
for n, t in v.items():
if isinstance(t, ColoTensor):
# skip key not in mapping.
# For Adam, if it dose not execute step() once, there will be not exp_avg and exp_avg_sq in optimizer
if (k, n) not in mapping:
continue
t.set_tensor_spec(*mapping[(k, n)])

View File

@ -0,0 +1,50 @@
import torch
import torch.distributed as dist
from colossalai.tensor import ColoTensor, ColoTensorSpec
from colossalai.tensor.distspec import _DistSpec
def gather_tensor(colo_tensor: ColoTensor) -> None:
"""Make colo_tensor replicated when the rank is 0
"""
if not colo_tensor.is_replicate():
pg = colo_tensor.get_process_group()
# for the group which contains rank 0
if pg.tp_rank_list()[0] == 0:
old_dist_spec = colo_tensor.dist_spec
colo_tensor.to_replicate_()
if dist.get_rank() != 0:
colo_tensor.set_dist_spec(old_dist_spec)
# synchronize all processes for unexpected problems
dist.barrier()
if dist.get_rank() == 0:
setattr(colo_tensor, 'save_ready', True) # set saving signitrue
def scatter_tensor(colo_tensor: ColoTensor, dist_spec: _DistSpec) -> None:
"""Reversal operation of `gather_tensor`.
"""
if dist_spec.placement == 'r':
dist.broadcast(colo_tensor.data, 0)
else:
global_size = colo_tensor.size_global()
if dist.get_rank() == 0:
entire_data = colo_tensor.data
else:
entire_data = torch.empty(global_size, device=colo_tensor.device)
dist.broadcast(entire_data, 0)
if dist.get_rank() == 0:
colo_tensor.set_dist_spec(dist_spec)
else:
rep_tensor = ColoTensor(entire_data, ColoTensorSpec(
pg=colo_tensor.get_process_group(),
compute_attr=colo_tensor.compute_spec))
rep_tensor.set_dist_spec(dist_spec)
with torch.no_grad():
colo_tensor.data.copy_(rep_tensor.data)
# synchronize all processes for unexpected problems
dist.barrier()

View File

@ -1,6 +1,7 @@
import os, shutil
import torch
import pytest
from copy import deepcopy
from functools import partial
import torch.multiprocessing as mp
@ -15,8 +16,7 @@ from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup, DistSpecManager, ReplicaSpec
from colossalai.nn.parallel.data_parallel import ColoDDP
from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint
from colossalai.nn.optimizer import ColossalaiOptimizer
@ -63,8 +63,8 @@ def init_1d_row_for_linear_weight_spec(model, pg: ProcessGroup):
def check_param_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
assert torch.allclose(torch_p, p, rtol=1e-3, atol=1e-1)
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
assert torch.all(p.data == tp.data), "{} went wrong.\n {} vs {}\n{}".format(n, p, tp, p.shape)
def remove(path):
@ -84,9 +84,13 @@ def compare_optims(optim1, optim2):
if k not in state2:
continue
p2 = state2[k]
if isinstance(p1, ColoTensor):
assert isinstance(p2, ColoTensor)
assert torch.allclose(p1.to_replicate_(), p2.to_replicate_(), rtol=1e-3, atol=1e-1)
for n, t1 in p1.items():
if n not in p2:
continue
t2 = p2[n]
if isinstance(t1, ColoTensor):
assert isinstance(t2, ColoTensor)
assert torch.allclose(t1, t2, rtol=0, atol=0)
def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_scheduler, pg):
@ -99,7 +103,6 @@ def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_sch
# set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
model_reload = model_builder(checkpoint=True)
if use_mp_reload:
if 'bert' == model_name:
@ -119,25 +122,26 @@ def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_sch
elif 'token_type_embeddings' in name and 'weight' in name:
init_1d_col_embedding(p, pg)
elif p.process_group.tp_world_size() == 1:
p.redistribute(ReplicaSpec(), pg)
p.set_process_group(pg)
elif "simple_net" == model_name:
init_spec_func(model, pg)
model_reload = deepcopy(model)
model = model.cuda()
model.train()
model.eval()
model_reload = model_reload.cuda()
model_reload.train()
model_reload.eval()
opt_class = torch.optim.Adam
colo_optimizer = ColossalaiOptimizer(opt_class(model.parameters(), lr=0.1))
colo_optimizer_reload = ColossalaiOptimizer(opt_class(model_reload.parameters(), lr=0.1))
run_reload = False
for i, (data, label) in enumerate(train_dataloader):
# Zero grad
colo_optimizer.zero_grad()
colo_optimizer_reload.zero_grad()
data = data.to(get_current_device())
label = label.to(get_current_device())
@ -155,43 +159,33 @@ def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_sch
loss.backward()
loss_reload.backward()
if run_reload:
colo_optimizer_reload.zero_grad()
if criterion:
output_reload = model_reload(data)
loss_reload = criterion(output_reload, label)
else:
loss_reload = model_reload(data, label)
loss_reload.backward()
colo_optimizer_reload.step()
colo_optimizer.step()
colo_optimizer_reload.step()
if i > 2:
break
if not os.path.isdir('./checkpoint') and rank == 0:
os.mkdir('./checkpoint')
dist.barrier()
save_checkpoint('./checkpoint', 0, model, colo_optimizer, None)
dist.barrier()
load_checkpoint('./checkpoint', 0, model_reload, colo_optimizer_reload, None)
dist.barrier()
# Since model is sharded, we merge them before param checking.
for p in model.parameters():
p.to_replicate_()
for p in model_reload.parameters():
p.to_replicate_()
check_param_equal(model, model_reload)
compare_optims(colo_optimizer, colo_optimizer_reload)
if rank == 0:
remove('./checkpoint')
dist.barrier()
def run_dist(rank, world_size, port, use_ddp, use_mp_reload, test_scheduler):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=world_size)
for model_name in ['simple_net', 'bert']:
# TODO(haichen) add BERT in the test
# the data loader of BERT is in DDP mode, causing the input data is not replicated in the TP context
for model_name in ['simple_net']:
_run_checkpoint(model_name,
init_1d_row_for_linear_weight_spec,
use_ddp,

View File

@ -0,0 +1,47 @@
import torch
import pytest
from functools import partial
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup, ColoTensorSpec
from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor
from tests.test_tensor._utils import tensor_shard_equal
def run_dist(rank, world_size, port, dp_degree, tp_degree):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(dp_degree=dp_degree, tp_degree=tp_degree)
x = torch.randn(4, 4, device=get_current_device())
param = ColoTensor(torch.nn.Parameter(x), spec=ColoTensorSpec(pg))
spec = ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)
param.set_tensor_spec(*spec)
gather_tensor(param)
if dist.get_rank() == 0:
assert torch.allclose(x, param.data, rtol=0, atol=0)
else:
assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size())
dist.barrier()
scatter_tensor(param, spec[0])
assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size())
assert param.requires_grad is True
dist.barrier()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [4])
@rerun_if_address_is_in_use()
def test_checkpoint(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), dp_degree=2, tp_degree=world_size // 2)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_checkpoint(world_size=4)