mirror of https://github.com/hpcaitech/ColossalAI
[chat] polish performance evaluator (#3647)
parent
50793b35f4
commit
f8288315d9
|
@ -19,6 +19,14 @@ def print_rank_0(*args, **kwargs) -> None:
|
|||
print(*args, **kwargs)
|
||||
|
||||
|
||||
def divide(x: float, y: float) -> float:
|
||||
if y == 0:
|
||||
return float('inf')
|
||||
elif y == float('inf'):
|
||||
return float('nan')
|
||||
return x / y
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def all_reduce_mean(x: float, world_size: int) -> float:
|
||||
if world_size == 1:
|
||||
|
@ -29,6 +37,24 @@ def all_reduce_mean(x: float, world_size: int) -> float:
|
|||
return tensor.item()
|
||||
|
||||
|
||||
class Timer:
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.start_time: Optional[float] = None
|
||||
self.duration: float = 0.
|
||||
|
||||
def start(self) -> None:
|
||||
self.start_time = time()
|
||||
|
||||
def end(self) -> None:
|
||||
assert self.start_time is not None
|
||||
self.duration += time() - self.start_time
|
||||
self.start_time = None
|
||||
|
||||
def reset(self) -> None:
|
||||
self.duration = 0.
|
||||
|
||||
|
||||
class PerformanceEvaluator(Callback):
|
||||
"""
|
||||
Callback for valuate the performance of the model.
|
||||
|
@ -58,27 +84,34 @@ class PerformanceEvaluator(Callback):
|
|||
self.ignore_episodes = ignore_episodes
|
||||
self.disable: bool = False
|
||||
|
||||
self.make_experience_duration: float = 0.
|
||||
self.make_experience_start_time: Optional[float] = None
|
||||
self.overall_timer = Timer()
|
||||
self.make_experience_timer = Timer()
|
||||
self.learn_timer = Timer()
|
||||
self.make_experience_num_samples: int = 0
|
||||
self.make_experience_flop: int = 0
|
||||
self.learn_duration: float = 0.
|
||||
self.learn_start_time: Optional[float] = None
|
||||
self.learn_num_samples: int = 0
|
||||
self.learn_flop: int = 0
|
||||
|
||||
def on_episode_start(self, episode: int) -> None:
|
||||
self.disable = self.ignore_episodes > 0 and episode < self.ignore_episodes
|
||||
if self.disable:
|
||||
return
|
||||
self.overall_timer.start()
|
||||
|
||||
def on_episode_end(self, episode: int) -> None:
|
||||
if self.disable:
|
||||
return
|
||||
self.overall_timer.end()
|
||||
|
||||
def on_make_experience_start(self) -> None:
|
||||
if self.disable:
|
||||
return
|
||||
self.make_experience_start_time = time()
|
||||
self.make_experience_timer.start()
|
||||
|
||||
def on_make_experience_end(self, experience: Experience) -> None:
|
||||
if self.disable:
|
||||
return
|
||||
self.make_experience_duration += time() - self.make_experience_start_time
|
||||
self.make_experience_timer.end()
|
||||
|
||||
batch_size, seq_len = experience.sequences.shape
|
||||
|
||||
|
@ -101,12 +134,12 @@ class PerformanceEvaluator(Callback):
|
|||
def on_learn_batch_start(self) -> None:
|
||||
if self.disable:
|
||||
return
|
||||
self.learn_start_time = time()
|
||||
self.learn_timer.start()
|
||||
|
||||
def on_learn_batch_end(self, metrics: dict, experience: Experience) -> None:
|
||||
if self.disable:
|
||||
return
|
||||
self.learn_duration += time() - self.learn_start_time
|
||||
self.learn_timer.end()
|
||||
|
||||
batch_size, seq_len = experience.sequences.shape
|
||||
|
||||
|
@ -118,16 +151,33 @@ class PerformanceEvaluator(Callback):
|
|||
self.learn_flop += self.critic_num_params * batch_size * seq_len * 2 * (3 + int(self.enable_grad_checkpoint))
|
||||
|
||||
def on_fit_end(self) -> None:
|
||||
avg_make_experience_duration = all_reduce_mean(self.make_experience_duration, self.world_size)
|
||||
avg_learn_duration = all_reduce_mean(self.learn_duration, self.world_size)
|
||||
avg_make_experience_duration = all_reduce_mean(self.make_experience_timer.duration, self.world_size)
|
||||
avg_learn_duration = all_reduce_mean(self.learn_timer.duration, self.world_size)
|
||||
avg_overall_duration = all_reduce_mean(self.overall_timer.duration, self.world_size)
|
||||
|
||||
avg_make_experience_throughput = self.make_experience_num_samples / (avg_make_experience_duration + 1e-12)
|
||||
avg_make_experience_throughput = self.make_experience_num_samples * \
|
||||
self.world_size / (avg_make_experience_duration + 1e-12)
|
||||
avg_make_experience_tflops = self.make_experience_flop / 1e12 / (avg_make_experience_duration + 1e-12)
|
||||
|
||||
avg_learn_throughput = self.learn_num_samples / (avg_learn_duration + 1e-12)
|
||||
avg_learn_throughput = self.learn_num_samples * self.world_size / (avg_learn_duration + 1e-12)
|
||||
avg_learn_tflops = self.learn_flop / 1e12 / (avg_learn_duration + 1e-12)
|
||||
|
||||
num_effective_samples = min(self.learn_num_samples, self.make_experience_num_samples) * self.world_size
|
||||
|
||||
avg_overall_throughput = num_effective_samples / (avg_overall_duration + 1e-12)
|
||||
|
||||
overall_time_per_sample = divide(1, avg_overall_throughput)
|
||||
make_experience_time_per_sample = divide(avg_make_experience_duration, num_effective_samples)
|
||||
learn_time_per_sample = divide(avg_learn_duration, num_effective_samples)
|
||||
|
||||
print_rank_0(
|
||||
f'Making experience throughput: {avg_make_experience_throughput:.3f} samples/sec, TFLOPS: {avg_make_experience_tflops:.3f}'
|
||||
f'Performance summary:\n' +
|
||||
f'Generate {self.make_experience_num_samples * self.world_size} samples, throughput: {avg_make_experience_throughput:.2f} samples/s, TFLOPS per GPU: {avg_make_experience_tflops:.2f}\n'
|
||||
+
|
||||
f'Train {self.learn_num_samples * self.world_size} samples, throughput: {avg_learn_throughput:.2f} samples/s, TFLOPS per GPU: {avg_learn_tflops:.2f}\n'
|
||||
+ f'Overall throughput: {avg_overall_throughput:.2f} samples/s\n' +
|
||||
f'Overall time per sample: {overall_time_per_sample:.2f} s\n' +
|
||||
f'Make experience time per sample: {make_experience_time_per_sample:.2f} s, {make_experience_time_per_sample/overall_time_per_sample*100:.2f}%\n'
|
||||
+
|
||||
f'Learn time per sample: {learn_time_per_sample:.2f} s, {learn_time_per_sample/overall_time_per_sample*100:.2f}%'
|
||||
)
|
||||
print_rank_0(f'Learning throughput: {avg_learn_throughput:.3f} samples/sec, TFLOPS: {avg_learn_tflops:.3f}')
|
||||
|
|
Loading…
Reference in New Issue