mirror of https://github.com/hpcaitech/ColossalAI
[NFC] polish tests/test_layers/test_2d/checks_2d/check_operation_2d.py code style (#1715)
parent
e1d780030d
commit
f6389d0813
|
@ -41,18 +41,8 @@ def check_AB():
|
|||
|
||||
out_shape = (BATCH_SIZE // DEPTH, SEQ_LENGTH, 4 * HIDDEN_SIZE // DEPTH)
|
||||
|
||||
out = Matmul_AB_2D.apply(
|
||||
A, B,
|
||||
DEPTH,
|
||||
out_shape,
|
||||
i, j,
|
||||
ParallelMode.PARALLEL_2D_ROW,
|
||||
ParallelMode.PARALLEL_2D_COL,
|
||||
data_parallel_rank,
|
||||
pipeline_parallel_rank,
|
||||
pipeline_parallel_size,
|
||||
tensor_parallel_size
|
||||
)
|
||||
out = Matmul_AB_2D.apply(A, B, DEPTH, out_shape, i, j, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL,
|
||||
data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size)
|
||||
|
||||
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
|
||||
A_master = A_master.clone()
|
||||
|
@ -119,17 +109,9 @@ def check_ABT():
|
|||
B = B.clone()
|
||||
B.requires_grad = True
|
||||
|
||||
out = Matmul_ABT_2D.apply(
|
||||
C, B,
|
||||
DEPTH, (BATCH_SIZE // DEPTH, SEQ_LENGTH, HIDDEN_SIZE // DEPTH),
|
||||
i, j,
|
||||
ParallelMode.PARALLEL_2D_ROW,
|
||||
ParallelMode.PARALLEL_2D_COL,
|
||||
data_parallel_rank,
|
||||
pipeline_parallel_rank,
|
||||
pipeline_parallel_size,
|
||||
tensor_parallel_size
|
||||
)
|
||||
out = Matmul_ABT_2D.apply(C, B, DEPTH, (BATCH_SIZE // DEPTH, SEQ_LENGTH, HIDDEN_SIZE // DEPTH), i, j,
|
||||
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, data_parallel_rank,
|
||||
pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size)
|
||||
|
||||
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||
C_master = C_master.clone()
|
||||
|
@ -194,17 +176,9 @@ def check_ATB():
|
|||
C = C.clone()
|
||||
C.requires_grad = True
|
||||
|
||||
out = Matmul_ATB_2D.apply(
|
||||
A, C,
|
||||
DEPTH, (HIDDEN_SIZE // DEPTH, 4 * HIDDEN_SIZE // DEPTH),
|
||||
i, j,
|
||||
ParallelMode.PARALLEL_2D_ROW,
|
||||
ParallelMode.PARALLEL_2D_COL,
|
||||
data_parallel_rank,
|
||||
pipeline_parallel_rank,
|
||||
pipeline_parallel_size,
|
||||
tensor_parallel_size
|
||||
)
|
||||
out = Matmul_ATB_2D.apply(A, C, DEPTH, (HIDDEN_SIZE // DEPTH, 4 * HIDDEN_SIZE // DEPTH), i, j,
|
||||
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, data_parallel_rank,
|
||||
pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size)
|
||||
|
||||
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
|
||||
A_master = A_master.clone()
|
||||
|
@ -212,8 +186,7 @@ def check_ATB():
|
|||
C_master = C_master.clone()
|
||||
C_master.requires_grad = True
|
||||
B_master = torch.matmul(
|
||||
A_master.view(-1, A_master.shape[-1]).transpose(0, 1),
|
||||
C_master.view(-1, C_master.shape[-1]))
|
||||
A_master.view(-1, A_master.shape[-1]).transpose(0, 1), C_master.view(-1, C_master.shape[-1]))
|
||||
B = torch.chunk(B_master, DEPTH, dim=0)[i]
|
||||
B = torch.chunk(B, DEPTH, dim=-1)[j]
|
||||
check_equal(out, B)
|
||||
|
|
Loading…
Reference in New Issue