Browse Source

[fp8] Disable all_gather intranode. Disable Redundant all_gather fp8 (#6059)

* all_gather only internode, fix pytest

* fix cuda arch <89 compile pytest error

* fix pytest failure

* disable all_gather_into_tensor_flat_fp8

* fix fp8 format

* fix pytest

* fix conversations

* fix chunk tuple to list
pull/6063/head
Guangyao Zhang 2 months ago committed by GitHub
parent
commit
f20b066c59
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 97
      colossalai/quantization/fp8.py
  2. 4
      colossalai/shardformer/layer/_operation.py
  3. 12
      colossalai/zero/gemini/chunk/chunk.py
  4. 4
      colossalai/zero/low_level/bookkeeping/tensor_bucket.py
  5. 9
      colossalai/zero/low_level/low_level_optim.py
  6. 4
      tests/test_fp8/test_fp8_all_to_all.py
  7. 17
      tests/test_fp8/test_fp8_allgather.py
  8. 43
      tests/test_fp8/test_fp8_allgather_flat.py

97
colossalai/quantization/fp8.py

@ -10,6 +10,10 @@ from torch.distributed import ReduceOp
SUPPORT_TORCH_COMPILE = Version(torch.__version__) >= Version("2.4.0") SUPPORT_TORCH_COMPILE = Version(torch.__version__) >= Version("2.4.0")
SCALE_BYTES = 4 SCALE_BYTES = 4
try:
cuda_arch = int("".join(str(i) for i in torch.cuda.get_device_capability()))
except:
cuda_arch = 0
class Handle: class Handle:
@ -185,7 +189,7 @@ def all_reduce_fp8(
return dist.all_reduce(tensor, op=op, group=group, async_op=async_op) return dist.all_reduce(tensor, op=op, group=group, async_op=async_op)
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False) @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False, disable=cuda_arch < 89)
def _all_to_all_single_fp8( def _all_to_all_single_fp8(
output, input, output_split_sizes=None, input_split_sizes=None, fp8_format="e5m2", group=None, async_op=False output, input, output_split_sizes=None, input_split_sizes=None, fp8_format="e5m2", group=None, async_op=False
) -> Optional[Handle]: ) -> Optional[Handle]:
@ -606,79 +610,7 @@ def split_chunk_by_channel(
return chunk.split(sizes) return chunk.split(sizes)
def all_gather_into_tensor_flat_fp8( @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False, disable=cuda_arch < 89)
output_tensor: torch.Tensor,
input_tensor: torch.Tensor,
output_shape: torch.Size,
group: dist.ProcessGroup,
fp8_format: str = "e4m3",
async_op: bool = False,
) -> Optional[Handle]:
"""all gather into tensor in fp8 format
Args:
output_tensor (torch.Tensor): output tensor, which is flattened
input_tensor (torch.Tensor): input tensor, which is flattened
group (dist.ProcessGroup): process group
fp8_format (str, optional): fp8 format, e4m3 or e5m2. Defaults to "e4m3".
"""
assert input_tensor.dim() == 1 and output_tensor.dim() == 1, "input/output tensor should be flattened"
world_size = dist.get_world_size(group)
assert (
output_tensor.numel() == input_tensor.numel() * world_size
), "output tensor size should be world_size times of input tensor size"
input_type = output_tensor.dtype
fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2
fp8_max = torch.finfo(fp8_type).max
if len(output_shape) == 2:
per_channel_max = torch.zeros(output_shape[0], device=output_tensor.device, dtype=torch.float)
num_channels, channel_size = output_shape
rank = dist.get_rank(group)
channel_start_idx = (input_tensor.numel() * rank) // channel_size
per_channel_splits = split_chunk_by_channel(input_tensor, channel_size, num_channels, rank, world_size)
for i, per_channel_split in enumerate(per_channel_splits):
idx = i + channel_start_idx
if idx < num_channels:
per_channel_max[idx] = per_channel_split.abs().max().float()
dist.all_reduce(per_channel_max, op=dist.ReduceOp.MAX, group=group)
per_channel_max = torch.where(per_channel_max > 0, per_channel_max, 1.0)
scale = fp8_max / per_channel_max
fp8_input = input_tensor.float()
fp8_per_channel_splits = split_chunk_by_channel(fp8_input, channel_size, num_channels, rank, world_size)
for i, per_channel_split in enumerate(fp8_per_channel_splits):
idx = i + channel_start_idx
if idx < num_channels:
per_channel_split.mul_(scale[idx])
fp8_input = fp8_input.to(fp8_type)
else:
per_tensor_max = input_tensor.abs().max().float()
dist.all_reduce(per_tensor_max, op=dist.ReduceOp.MAX, group=group)
per_tensor_max = torch.where(per_tensor_max > 0, per_tensor_max, 1.0)
scale = fp8_max / per_tensor_max
fp8_input = (scale * input_tensor.float()).to(fp8_type)
scale_inv = 1.0 / scale
buffer = torch.empty_like(output_tensor, dtype=fp8_type)
tensor_handle = dist.all_gather_into_tensor(
buffer.view(torch.uint8), fp8_input.view(torch.uint8), group=group, async_op=async_op
)
def cast_op():
numel = output_shape.numel()
valid_buffer = buffer[:numel].reshape(output_shape)
valid_buffer = cast_from_fp8(valid_buffer, scale_inv, input_type, per_channel_scale=(len(output_shape) == 2))
output_tensor[:numel].copy_(valid_buffer.view(-1))
if async_op:
return Handle([tensor_handle], cast_op)
else:
cast_op()
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False)
def _all_to_all_fp8(output_list, input_list, group=None, fp8_format="e5m2", async_op=False): def _all_to_all_fp8(output_list, input_list, group=None, fp8_format="e5m2", async_op=False):
world_size = dist.get_world_size(group) world_size = dist.get_world_size(group)
input_type = input_list[0].dtype input_type = input_list[0].dtype
@ -718,8 +650,8 @@ def all_to_all_fp8(output_list, input_list, group=None, fp8_format="e5m2", async
return _all_to_all_fp8(output_list, input_list, group=group, fp8_format=fp8_format, async_op=async_op) return _all_to_all_fp8(output_list, input_list, group=group, fp8_format=fp8_format, async_op=async_op)
def gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]: @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False, disable=cuda_arch < 89)
def _all_gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]:
world_size = dist.get_world_size(group) world_size = dist.get_world_size(group)
input_type = input_.dtype input_type = input_.dtype
@ -743,8 +675,17 @@ def gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: boo
cast_op() cast_op()
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False)
def all_gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]: def all_gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]:
if process_group_is_intranode(group):
return dist.all_gather(output_list, input_, group=group, async_op=async_op)
else:
return _all_gather_fp8(output_list, input_, group=group, fp8_format=fp8_format, async_op=async_op)
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False, disable=cuda_arch < 89)
def all_gather_fp8_lagacy(
output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False
) -> Optional[Handle]:
world_size = dist.get_world_size(group) world_size = dist.get_world_size(group)
shape = input_.shape shape = input_.shape
input_type = input_.dtype input_type = input_.dtype
@ -769,7 +710,7 @@ def all_gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op:
# out.copy_(output[i].view(shape)) # out.copy_(output[i].view(shape))
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False) @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False, disable=cuda_arch < 89)
def all_gather_fp8_ring(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]: def all_gather_fp8_ring(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]:
world_size = dist.get_world_size(group) world_size = dist.get_world_size(group)
rank = dist.get_rank(group) rank = dist.get_rank(group)

4
colossalai/shardformer/layer/_operation.py

@ -17,10 +17,10 @@ except ImportError:
_grad_accum_fusion_available = False _grad_accum_fusion_available = False
from colossalai.quantization.fp8 import ( from colossalai.quantization.fp8 import (
all_gather_fp8,
all_reduce_fp8, all_reduce_fp8,
all_to_all_fp8, all_to_all_fp8,
all_to_all_single_fp8, all_to_all_single_fp8,
gather_fp8,
reduce_scatter_fp8, reduce_scatter_fp8,
) )
@ -961,7 +961,7 @@ def _gather(input_, dim=-1, process_group=None, fp8_communication=False, fp8_for
input_ = input_.contiguous() input_ = input_.contiguous()
tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
if fp8_communication: if fp8_communication:
gather_fp8(tensor_list, input_, fp8_format=fp8_format, group=process_group) all_gather_fp8(tensor_list, input_, fp8_format=fp8_format, group=process_group)
else: else:
dist.all_gather(tensor_list, input_, group=process_group) dist.all_gather(tensor_list, input_, group=process_group)

12
colossalai/zero/gemini/chunk/chunk.py

@ -7,6 +7,7 @@ import torch.distributed as dist
from torch.distributed import ProcessGroup from torch.distributed import ProcessGroup
from colossalai.accelerator import get_accelerator from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_gather_fp8
class TensorState(Enum): class TensorState(Enum):
@ -523,11 +524,12 @@ class Chunk:
alloc_storage(self.cuda_global_chunk) alloc_storage(self.cuda_global_chunk)
assert self.cuda_global_chunk.is_contiguous() assert self.cuda_global_chunk.is_contiguous()
if self.fp8_communication: if self.fp8_communication:
assert async_op == False, "fp8 all-gather does not support async_op!" work = all_gather_fp8(
from colossalai.quantization.fp8 import all_gather_into_tensor_flat_fp8 list(self.cuda_global_chunk.chunk(self.pg_size)),
self.cuda_shard,
work = all_gather_into_tensor_flat_fp8( self.torch_pg,
self.cuda_global_chunk, self.cuda_shard, self.cuda_global_chunk.shape, self.torch_pg fp8_format="e4m3",
async_op=async_op,
) )
else: else:
work = dist.all_gather_into_tensor( work = dist.all_gather_into_tensor(

4
colossalai/zero/low_level/bookkeeping/tensor_bucket.py

@ -4,7 +4,7 @@ import torch
import torch.distributed as dist import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.quantization.fp8 import all_gather_into_tensor_flat_fp8 from colossalai.quantization.fp8 import all_gather_fp8
class TensorBucket: class TensorBucket:
@ -67,7 +67,7 @@ class TensorBucket:
flat = self.flatten() flat = self.flatten()
buffer = torch.empty(flat.numel() * dist.get_world_size(group), device=flat.device, dtype=flat.dtype) buffer = torch.empty(flat.numel() * dist.get_world_size(group), device=flat.device, dtype=flat.dtype)
if fp8_communication: if fp8_communication:
all_gather_into_tensor_flat_fp8(buffer, flat, output_shape=buffer.shape, group=group) all_gather_fp8(list(buffer.chunk(dist.get_world_size(group))), flat, group=group, fp8_format="e4m3")
else: else:
dist.all_gather_into_tensor(buffer, flat, group=group) dist.all_gather_into_tensor(buffer, flat, group=group)
unflat_buffers = [self.unflatten(buffer) for buffer in buffer.chunk(dist.get_world_size(group))] unflat_buffers = [self.unflatten(buffer) for buffer in buffer.chunk(dist.get_world_size(group))]

9
colossalai/zero/low_level/low_level_optim.py

@ -20,7 +20,7 @@ from colossalai.amp.naive_amp.mixed_precision_mixin import (
) )
from colossalai.interface import OptimizerWrapper from colossalai.interface import OptimizerWrapper
from colossalai.logging import get_dist_logger from colossalai.logging import get_dist_logger
from colossalai.quantization.fp8 import all_gather_into_tensor_flat_fp8, all_reduce_fp8, reduce_scatter_fp8 from colossalai.quantization.fp8 import all_gather_fp8, all_reduce_fp8, reduce_scatter_fp8
from colossalai.tensor.moe_tensor.api import is_moe_tensor from colossalai.tensor.moe_tensor.api import is_moe_tensor
from ._utils import calculate_global_norm_from_list, has_inf_or_nan, release_param_grad, sync_tensor from ._utils import calculate_global_norm_from_list, has_inf_or_nan, release_param_grad, sync_tensor
@ -580,8 +580,11 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
else: else:
if param_to_gather.numel() > self.pg_to_tensor_bucket[pg].max_size: if param_to_gather.numel() > self.pg_to_tensor_bucket[pg].max_size:
if self._fp8_communication: if self._fp8_communication:
all_gather_into_tensor_flat_fp8( all_gather_fp8(
padded_working_param, param_to_gather, pg, fp8_format="e4m3" list(padded_working_param.chunk(dist.get_world_size(pg))),
param_to_gather,
pg,
fp8_format="e4m3",
) )
else: else:
dist.all_gather_into_tensor(padded_working_param, param_to_gather, pg) dist.all_gather_into_tensor(padded_working_param, param_to_gather, pg)

4
tests/test_fp8/test_fp8_all_to_all.py

@ -5,7 +5,7 @@ from torch.testing import assert_close
from colossalai import launch from colossalai import launch
from colossalai.accelerator import get_accelerator from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_to_all_fp8 from colossalai.quantization.fp8 import _all_to_all_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@ -20,7 +20,7 @@ def check_4gpu(shape, scatter_dim, dtype, fp8_format):
input_tensor_list = [x.contiguous() for x in input_tensor_list] input_tensor_list = [x.contiguous() for x in input_tensor_list]
output_tensor_list_fp8 = [torch.empty_like(x) for x in input_tensor_list] output_tensor_list_fp8 = [torch.empty_like(x) for x in input_tensor_list]
output_tensor_list = [torch.empty_like(x) for x in input_tensor_list] output_tensor_list = [torch.empty_like(x) for x in input_tensor_list]
all_to_all_fp8(output_tensor_list_fp8, input_tensor_list, group=_get_default_group(), fp8_format=fp8_format) _all_to_all_fp8(output_tensor_list_fp8, input_tensor_list, group=_get_default_group(), fp8_format=fp8_format)
dist.all_to_all(output_tensor_list, input_tensor_list, group=_get_default_group()) dist.all_to_all(output_tensor_list, input_tensor_list, group=_get_default_group())
assert_close(output_tensor_list_fp8, output_tensor_list, rtol=0.1, atol=0.1) assert_close(output_tensor_list_fp8, output_tensor_list, rtol=0.1, atol=0.1)

17
tests/test_fp8/test_fp8_gather.py → tests/test_fp8/test_fp8_allgather.py

@ -5,22 +5,13 @@ from torch.testing import assert_close
from colossalai import launch from colossalai import launch
from colossalai.accelerator import get_accelerator from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import gather_fp8 from colossalai.quantization.fp8 import _all_gather_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize( @parameterize(
"shape", "shape",
[ [(3, 7, 16)],
(3, 7),
(2, 1),
(1, 2),
(2, 2),
(4, 2),
(5,),
(4,),
(2,),
],
) )
@parameterize("dtype", [torch.bfloat16, torch.float16]) @parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"]) @parameterize("fp8_format", ["e4m3", "e5m2"])
@ -30,7 +21,9 @@ def check_4gpu(shape, dtype, fp8_format, async_op):
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
output_list = [torch.empty_like(x) for _ in range(world_size)] output_list = [torch.empty_like(x) for _ in range(world_size)]
output_list_fp8 = [torch.empty_like(x) for _ in range(world_size)] output_list_fp8 = [torch.empty_like(x) for _ in range(world_size)]
fp8_handle = gather_fp8(output_list_fp8, x, group=_get_default_group(), fp8_format=fp8_format, async_op=async_op) fp8_handle = _all_gather_fp8(
output_list_fp8, x, group=_get_default_group(), fp8_format=fp8_format, async_op=async_op
)
origin_hanle = dist.all_gather(output_list, x, group=_get_default_group(), async_op=async_op) origin_hanle = dist.all_gather(output_list, x, group=_get_default_group(), async_op=async_op)
if async_op: if async_op:
fp8_handle.wait() fp8_handle.wait()

43
tests/test_fp8/test_fp8_allgather_flat.py

@ -1,43 +0,0 @@
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.distributed.distributed_c10d import _get_default_group
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_gather_into_tensor_flat_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize("shape", [(3, 7), (2, 1), (1, 2), (2, 2), (4, 2), (5,), (4,), (2,)])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("async_op", [True, False])
def check_4gpu(shape, dtype, async_op):
world_size = dist.get_world_size()
rank = dist.get_rank()
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
flat_padded_x = x.view(-1)
if flat_padded_x.size(0) % world_size != 0:
pad_size = world_size - flat_padded_x.size(0) % world_size
flat_padded_x = F.pad(flat_padded_x, (0, pad_size))
output = torch.empty_like(flat_padded_x)
chunk = flat_padded_x.chunk(world_size)[rank].clone()
handle = all_gather_into_tensor_flat_fp8(output, chunk, x.shape, group=_get_default_group(), async_op=async_op)
if async_op:
handle.wait()
assert_close(output[: x.numel()], x.view(-1), rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_gather_flat():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_gather_flat()
Loading…
Cancel
Save