mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] polish model test (#915)
parent
0fab86b12a
commit
ed6426c300
|
@ -21,7 +21,9 @@ import numpy as np
|
|||
# Make it available to our ColoTensor
|
||||
from transformers.file_utils import ModelOutput
|
||||
from dataclasses import fields
|
||||
def post_init_colo(self):
|
||||
|
||||
|
||||
def _post_init_colo(self):
|
||||
class_fields = fields(self)
|
||||
# Safety and consistency checks
|
||||
if not len(class_fields):
|
||||
|
@ -56,11 +58,7 @@ def post_init_colo(self):
|
|||
# set the associated fields
|
||||
if first_field_iterator:
|
||||
for element in iterator:
|
||||
if (
|
||||
not isinstance(element, (list, tuple))
|
||||
or not len(element) == 2
|
||||
or not isinstance(element[0], str)
|
||||
):
|
||||
if (not isinstance(element, (list, tuple)) or not len(element) == 2 or not isinstance(element[0], str)):
|
||||
break
|
||||
setattr(self, element[0], element[1])
|
||||
if element[1] is not None:
|
||||
|
@ -73,9 +71,11 @@ def post_init_colo(self):
|
|||
if v is not None:
|
||||
self[field.name] = v
|
||||
|
||||
ModelOutput.__post_init__ = post_init_colo
|
||||
|
||||
ModelOutput.__post_init__ = _post_init_colo
|
||||
# complete the hack
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
random.seed(seed)
|
||||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||
|
@ -85,9 +85,9 @@ def set_seed(seed):
|
|||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
|
||||
def run_1d_col_tp():
|
||||
def run_1d_col_tp(model_name):
|
||||
# A simple net with two stacked nn.Linear
|
||||
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
|
||||
|
@ -95,6 +95,30 @@ def run_1d_col_tp():
|
|||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
if 'bert' == model_name:
|
||||
parallel_action_list_col = [
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DCol_Linear,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_col = TensorSpec(parallel_action_list_col)
|
||||
|
||||
parallel_action_list_embedding_col = [
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DCol_Embedding,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
||||
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
continue
|
||||
#print(name)
|
||||
if 'classifier' in name and ('weight' in name or 'bias' in name):
|
||||
p.set_spec(spec_col)
|
||||
if '_embeddings' in name and 'weight' in name:
|
||||
p.set_spec(spec_embedding_col)
|
||||
elif "simple_net" == model_name:
|
||||
parallel_action_list_row = [
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DRow_Linear,
|
||||
|
@ -115,12 +139,6 @@ def run_1d_col_tp():
|
|||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
model_torch = model_torch.cuda()
|
||||
|
||||
# A naive way to set spec for all weights in Linear
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
|
@ -132,6 +150,11 @@ def run_1d_col_tp():
|
|||
if 'embed' in name and 'weight' in name:
|
||||
p.set_spec(spec_embedding_col)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
model_torch = model_torch.cuda()
|
||||
|
||||
model = model.cuda()
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
|
@ -231,9 +254,9 @@ def test_colo_optimizer():
|
|||
break
|
||||
|
||||
|
||||
def run_1d_row_tp():
|
||||
def run_1d_row_tp(model_name: str):
|
||||
# A simple net with two stacked nn.Linear
|
||||
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
|
||||
|
@ -241,6 +264,11 @@ def run_1d_row_tp():
|
|||
with ColoInitContext(device=get_current_device()):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
model_torch = model_torch.cuda()
|
||||
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1,
|
||||
compute_pattern=ComputePattern.TP1DRow_Linear,
|
||||
|
@ -255,11 +283,6 @@ def run_1d_row_tp():
|
|||
]
|
||||
spec_embedding_row = TensorSpec(parallel_action_list_embedding_row)
|
||||
|
||||
set_seed(1)
|
||||
if rank == 0:
|
||||
model_torch = model_builder(checkpoint=True)
|
||||
model_torch = model_torch.cuda()
|
||||
|
||||
# A naive way to set spec for all weights in Linear
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
|
@ -307,91 +330,26 @@ def run_1d_row_tp():
|
|||
if i > 5:
|
||||
break
|
||||
|
||||
def run_bert_1d():
|
||||
get_components_func = non_distributed_component_funcs.get_callable('bert')
|
||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
device = get_current_device()
|
||||
|
||||
set_seed(1)
|
||||
with ColoInitContext(device=device):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
# parallel_action_list_row = [
|
||||
# ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
# ]
|
||||
# spec_row = TensorSpec(parallel_action_list_row)
|
||||
|
||||
parallel_action_list_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_col = TensorSpec(parallel_action_list_col)
|
||||
|
||||
parallel_action_list_embedding_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
||||
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
continue
|
||||
#print(name)
|
||||
if 'classifier' in name and ('weight' in name or 'bias' in name):
|
||||
p.set_spec(spec_col)
|
||||
if '_embeddings' in name and 'weight' in name:
|
||||
p.set_spec(spec_embedding_col)
|
||||
# for name, p in model.colo_named_parameters():
|
||||
# if not isinstance(p, ColoTensor):
|
||||
# continue
|
||||
# print(f"{name}: is_gathered {p.is_gathered()}")
|
||||
|
||||
model = model.cuda()
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 5:
|
||||
break
|
||||
data = data.to(device)
|
||||
label = label.to(device)
|
||||
|
||||
model.train()
|
||||
if criterion:
|
||||
output = model(data)
|
||||
loss = criterion(output, label)
|
||||
else:
|
||||
output = model(data, label)
|
||||
loss = output
|
||||
|
||||
loss.backward()
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_1d_row_tp()
|
||||
run_1d_col_tp()
|
||||
for name in ['bert', 'simple_net']:
|
||||
run_1d_row_tp(name)
|
||||
run_1d_col_tp(name)
|
||||
|
||||
def run_dist_bert(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_bert_1d()
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_simple_net(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
@pytest.mark.dist
|
||||
#@pytest.mark.parametrize('world_size', [1, 4])
|
||||
#Don't really add it to pytest now. After finishing Classifier and Loss, I(jzy) will remove this annotation.
|
||||
# FIXME(jzy) world size = 4 will fialed
|
||||
# @pytest.mark.parametrize('world_size', [4])
|
||||
@parameterize('world_size', [1])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert(world_size):
|
||||
run_func = partial(run_dist_bert, world_size=world_size, port=free_port())
|
||||
def test_model(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_simple_net()
|
||||
# test_model_parameters()
|
||||
# test_colo_optimizer()
|
||||
test_bert()
|
||||
test_model()
|
||||
|
|
Loading…
Reference in New Issue