fix image (#3288)
|
@ -1,6 +1,6 @@
|
||||||
<h1 align="center">
|
<h1 align="center">
|
||||||
<span>Coati - ColossalAI Talking Intelligence</span>
|
<span>Coati - ColossalAI Talking Intelligence</span>
|
||||||
<img width="auto" height="50px", src="assets/logo_coati.png"/>
|
<img width="auto" height="50px", src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/logo_coati.png"/>
|
||||||
</h1>
|
</h1>
|
||||||
|
|
||||||
|
|
||||||
|
@ -60,7 +60,7 @@ You can experience the performance of Coati7B on this page.
|
||||||
### Install the environment
|
### Install the environment
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
conda creat -n coati
|
conda create -n coati
|
||||||
conda activate coati
|
conda activate coati
|
||||||
pip install .
|
pip install .
|
||||||
```
|
```
|
||||||
|
@ -83,7 +83,7 @@ we colllected 104K bilingual dataset of Chinese and English, and you can find th
|
||||||
|
|
||||||
Here is how we collected the data
|
Here is how we collected the data
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="assets/data-collect.png" width=500/>
|
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/data-collect.png" width=500/>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
### Stage1 - Supervised instructs tuning
|
### Stage1 - Supervised instructs tuning
|
||||||
|
@ -127,7 +127,7 @@ torchrun --standalone --nproc_per_node=4 train_reward_model.py
|
||||||
Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process:
|
Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process:
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="assets/stage-3.jpeg" width=500/>
|
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chat/stage-3.jpeg" width=500/>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
you can run the `examples/train_prompts.sh` to start training PPO with human feedback
|
you can run the `examples/train_prompts.sh` to start training PPO with human feedback
|
||||||
|
@ -150,67 +150,67 @@ We also support training reward model with true-world data. See `examples/train_
|
||||||
|
|
||||||
<details><summary><b>E-mail</b></summary>
|
<details><summary><b>E-mail</b></summary>
|
||||||
|
|
||||||

|

|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>coding</b></summary>
|
<details><summary><b>coding</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>regex</b></summary>
|
<details><summary><b>regex</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>Tex</b></summary>
|
<details><summary><b>Tex</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>writing</b></summary>
|
<details><summary><b>writing</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>Table</b></summary>
|
<details><summary><b>Table</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### Open QA
|
### Open QA
|
||||||
<details><summary><b>Game</b></summary>
|
<details><summary><b>Game</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>Travel</b></summary>
|
<details><summary><b>Travel</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>Physical</b></summary>
|
<details><summary><b>Physical</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>Chemical</b></summary>
|
<details><summary><b>Chemical</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary><b>Economy</b></summary>
|
<details><summary><b>Economy</b></summary>
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
|
Before Width: | Height: | Size: 273 KiB |
Before Width: | Height: | Size: 307 KiB |
Before Width: | Height: | Size: 401 KiB |
Before Width: | Height: | Size: 390 KiB |
Before Width: | Height: | Size: 403 KiB |
Before Width: | Height: | Size: 640 KiB |
Before Width: | Height: | Size: 171 KiB |
Before Width: | Height: | Size: 173 KiB |
Before Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 370 KiB |
Before Width: | Height: | Size: 116 KiB |
Before Width: | Height: | Size: 284 KiB |
Before Width: | Height: | Size: 230 KiB |
Before Width: | Height: | Size: 229 KiB |