mirror of https://github.com/hpcaitech/ColossalAI
[Gemini] more tests for Gemini (#2038)
* [Gemini] more tests for Gemini * polish codepull/2039/head
parent
537e181705
commit
eb7742a4bb
|
@ -40,7 +40,7 @@ def get_training_components():
|
||||||
num_layer = 2
|
num_layer = 2
|
||||||
vocab_size = 32
|
vocab_size = 32
|
||||||
|
|
||||||
def bert_model_builder(checkpoint):
|
def bert_model_builder(checkpoint: bool = False):
|
||||||
config = BertConfig(vocab_size=vocab_size,
|
config = BertConfig(vocab_size=vocab_size,
|
||||||
gradient_checkpointing=checkpoint,
|
gradient_checkpointing=checkpoint,
|
||||||
hidden_size=hidden_dim,
|
hidden_size=hidden_dim,
|
||||||
|
|
|
@ -18,8 +18,9 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from colossalai.utils.cuda import get_current_device
|
from colossalai.utils.cuda import get_current_device
|
||||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
|
from tests.components_to_test import run_fwd_bwd
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
from tests.test_tensor.common_utils import debug_print, set_seed, tensor_equal, tensor_shard_equal
|
from tests.test_tensor.common_utils import set_seed
|
||||||
|
|
||||||
|
|
||||||
def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
|
def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
|
||||||
|
@ -37,19 +38,16 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
|
||||||
assert torch.allclose(value, temp_zero_value, rtol=1e-3, atol=1e-2), "parameter '{}' has problem.".format(key)
|
assert torch.allclose(value, temp_zero_value, rtol=1e-3, atol=1e-2), "parameter '{}' has problem.".format(key)
|
||||||
|
|
||||||
|
|
||||||
def run_fwd_bwd(model, criterion, optimizer, input_ids):
|
# 'gpt2', 'bert',
|
||||||
optimizer.zero_grad()
|
TEST_MODELS = ['gpt2', 'bert']
|
||||||
logits = model(input_ids)
|
# TEST_MODELS = ['simple_net']
|
||||||
logits = logits.float()
|
|
||||||
loss = criterion(logits, input_ids)
|
|
||||||
optimizer.backward(loss)
|
|
||||||
return logits
|
|
||||||
|
|
||||||
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
|
||||||
def exam_gpt_fwd_bwd(placement_policy):
|
@parameterize('model_name', TEST_MODELS)
|
||||||
|
def exam_model_step(placement_policy, model_name: str):
|
||||||
set_seed(42)
|
set_seed(42)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
|
@ -87,9 +85,13 @@ def exam_gpt_fwd_bwd(placement_policy):
|
||||||
if i > 2:
|
if i > 2:
|
||||||
break
|
break
|
||||||
|
|
||||||
zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids)
|
zero_optim.zero_grad()
|
||||||
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids)
|
torch_optim.zero_grad()
|
||||||
assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2)
|
|
||||||
|
torch_loss = run_fwd_bwd(torch_model, input_ids.cuda(), label.cuda(), criterion, use_init_ctx=False)
|
||||||
|
loss = run_fwd_bwd(model, input_ids.cuda(), label.cuda(), criterion, use_init_ctx=True)
|
||||||
|
|
||||||
|
assert torch.allclose(torch_loss, loss, rtol=1e-3, atol=1e-2), f"{torch_loss} vs {loss}"
|
||||||
# debug_print([0], zero_logits, torch_logits)
|
# debug_print([0], zero_logits, torch_logits)
|
||||||
|
|
||||||
zero_optim.step()
|
zero_optim.step()
|
||||||
|
@ -99,9 +101,10 @@ def exam_gpt_fwd_bwd(placement_policy):
|
||||||
|
|
||||||
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||||
def exam_tiny_example(placement_policy):
|
@parameterize('model_name', TEST_MODELS)
|
||||||
|
def exam_tiny_example(placement_policy, model_name: str):
|
||||||
set_seed(42)
|
set_seed(42)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
|
@ -131,9 +134,13 @@ def exam_tiny_example(placement_policy):
|
||||||
if i > 2:
|
if i > 2:
|
||||||
break
|
break
|
||||||
|
|
||||||
zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids)
|
zero_optim.zero_grad()
|
||||||
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids)
|
torch_optim.zero_grad()
|
||||||
assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2)
|
|
||||||
|
torch_loss = run_fwd_bwd(torch_model, input_ids.cuda(), label.cuda(), criterion, use_init_ctx=False)
|
||||||
|
loss = run_fwd_bwd(model, input_ids.cuda(), label.cuda(), criterion, use_init_ctx=True)
|
||||||
|
|
||||||
|
assert torch.allclose(torch_loss, loss, rtol=1e-3, atol=1e-2), f"{torch_loss} vs {loss}"
|
||||||
# debug_print([0], zero_logits, torch_logits)
|
# debug_print([0], zero_logits, torch_logits)
|
||||||
|
|
||||||
zero_optim.step()
|
zero_optim.step()
|
||||||
|
@ -145,17 +152,17 @@ def exam_tiny_example(placement_policy):
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, port):
|
||||||
config = {}
|
config = {}
|
||||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
exam_gpt_fwd_bwd()
|
exam_model_step()
|
||||||
exam_tiny_example()
|
exam_tiny_example()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 4])
|
@pytest.mark.parametrize('world_size', [1, 4])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_gpt(world_size):
|
def test_optim(world_size):
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_gpt(2)
|
test_optim(2)
|
||||||
|
|
|
@ -19,9 +19,10 @@ from tests.test_tensor.common_utils import debug_print, set_seed
|
||||||
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
||||||
@parameterize('keep_gathered', [True, False])
|
@parameterize('keep_gathered', [True, False])
|
||||||
def exam_state_dict(placement_policy, keep_gathered):
|
@parameterize('model_name', ['gpt2', 'bert'])
|
||||||
|
def exam_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||||
set_seed(431)
|
set_seed(431)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
|
@ -53,9 +54,10 @@ def exam_state_dict(placement_policy, keep_gathered):
|
||||||
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
||||||
@parameterize('keep_gathered', [True, False])
|
@parameterize('keep_gathered', [True, False])
|
||||||
def exam_load_state_dict(placement_policy, keep_gathered):
|
@parameterize('model_name', ['gpt2', 'bert'])
|
||||||
|
def exam_load_state_dict(placement_policy, keep_gathered, model_name: str):
|
||||||
set_seed(431)
|
set_seed(431)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
|
|
Loading…
Reference in New Issue