Browse Source

[llama] polish training script and fix optim ckpt (#5368)

pull/5377/head
Hongxin Liu 10 months ago committed by GitHub
parent
commit
eb4f2d90f9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 14
      applications/Colossal-LLaMA-2/train.py
  2. 5
      colossalai/checkpoint_io/hybrid_parallel_checkpoint_io.py

14
applications/Colossal-LLaMA-2/train.py

@ -23,7 +23,7 @@ from colossal_llama2.utils.froze import freeze_non_embeds_parameters
from colossal_llama2.utils.neftune_patch import activate_neftune, deactivate_neftune
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
import colossalai
from colossalai.accelerator import get_accelerator
@ -232,7 +232,7 @@ def main() -> None:
else nullcontext()
)
with init_ctx:
model = LlamaForCausalLM.from_pretrained(args.pretrained)
model = LlamaForCausalLM(LlamaConfig.from_pretrained(args.pretrained))
# Freeze part of parameters.
if args.freeze_non_embeds_params:
freeze_non_embeds_parameters(model=model)
@ -277,6 +277,8 @@ def main() -> None:
lr_scheduler=lr_scheduler,
dataloader=dataloader,
)
if args.load_checkpoint is None:
booster.load_model(model, args.pretrained)
torch.set_default_dtype(torch.float)
@ -329,7 +331,12 @@ def main() -> None:
for epoch in range(start_epoch, args.num_epochs):
dataloader.sampler.set_epoch(epoch=epoch)
pbar = tqdm(desc=f"Epoch {epoch}", disable=not coordinator.is_master(), total=num_steps_per_epoch, initial=start_step // args.accumulation_steps)
pbar = tqdm(
desc=f"Epoch {epoch}",
disable=not coordinator.is_master(),
total=num_steps_per_epoch,
initial=start_step // args.accumulation_steps,
)
total_loss = torch.tensor(0.0, device=get_current_device())
for step, batch in enumerate(dataloader, start=start_step):
batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)}
@ -369,6 +376,7 @@ def main() -> None:
coordinator.print_on_master("Deactivate NEFTune before saving model.")
deactivate_neftune(model, handle)
accelerator.empty_cache()
save_checkpoint(
save_dir=args.save_dir,
booster=booster,

5
colossalai/checkpoint_io/hybrid_parallel_checkpoint_io.py

@ -14,6 +14,7 @@ from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from colossalai.cluster import DistCoordinator
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.utils import get_current_device
from .general_checkpoint_io import GeneralCheckpointIO
from .index_file import CheckpointIndexFile
@ -721,7 +722,7 @@ class HybridParallelCheckpointIO(GeneralCheckpointIO):
tp_group=self.tp_group,
use_zero=self.use_zero,
inplace=False,
device=torch.device("cuda"),
device=get_current_device(),
)
if self.pp_size == 1:
@ -854,7 +855,7 @@ class HybridParallelCheckpointIO(GeneralCheckpointIO):
if isinstance(v, torch.Tensor) and k != "step":
# First gather Zero shards.
if use_zero:
v = v.cuda()
v = v.to(get_current_device())
gather_tensor = [torch.zeros_like(v) for _ in range(dp_size)]
dist.all_gather(gather_tensor, v, group=dp_group)
v = torch.stack(gather_tensor).view(-1)[: param.numel()].reshape_as(param)

Loading…
Cancel
Save