[dtensor] updated api and doc (#3845)

pull/3926/head
Frank Lee 2023-06-08 10:18:17 +08:00 committed by GitHub
parent d51e83d642
commit eb39154d40
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 802 additions and 432 deletions

View File

@ -0,0 +1,73 @@
# 🗄 Device
## 📚 Table of Contents
- [🗄 Device](#-device)
- [📚 Table of Contents](#-table-of-contents)
- [🔗 Introduction](#-introduction)
- [📝 Design](#-design)
- [🔨 Usage](#-usage)
## 🔗 Introduction
This module contains the implementation of the abstraction of the device topology. It is used to represent the device topology and manage the distributed information related to the network.
## 📝 Design
This module is inspired by the DeviceMesh in the [Alpa project](https://github.com/alpa-projects/alpa) and the device array can be represented as a 1D or 2D mesh. We will be extending the device mesh to support 3D mesh in the future.
## 🔨 Usage
- Create a device mesh
```python
# this is the list of global ranks involved in the device mesh
# assume we have 4 GPUs and the global ranks for these GPUs are 0, 1, 2, 3
physical_mesh_id = torch.arange(4)
mesh_shape = [2, 2]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
```
- View the mesh
```python
# view the mesh shape
# expect output
# [2, 2]
print(device_mesh.shape)
# view the logical mesh with global ranks
# expect output
# [
# [0, 1],
# [2, 3]
# ]
print(device_mesh.logical_mesh_id)
# view the number of devices in the mesh
# expect output
# 4
print(device_mesh.num_devices)
```
- Initialize the process group
```python
# intialize process group
device_mesh.init_logical_process_group()
# get the process group for a rank with respect to an axis
# this is the process group involving global ranks 0 and 2
print(device_mesh.get_process_group(axis=0, global_rank=0))
# get the ranks in the process with respect to an axis
# expect output
# [0, 2]
print(device_mesh.get_ranks_in_process_group(axis=0, global_rank=0))
```

View File

@ -3,11 +3,19 @@
with some changes. """
import operator
from dataclasses import dataclass
from functools import reduce
from typing import List, Tuple
from typing import Dict, List, Union
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
@dataclass
class ProcessGroupContainer:
process_group: ProcessGroup
ranks: List[int]
# modified from alpa LogicalDeviceMesh(https://github.com/alpa-projects/alpa/blob/main/alpa/shard_parallel/auto_sharding.py)
@ -27,9 +35,11 @@ class DeviceMesh:
during initializing the DeviceMesh instance if the init_process_group set to True.
Otherwise, users need to call create_process_groups_for_logical_mesh manually to init logical process group.
(default: False)
need_flatten(bool, optional): initialize flatten_device_mesh during initializing the DeviceMesh instance if the need_flatten set to True.
device (str): the device for the process groups used by the DeviceMesh instance. (default: 'cuda')
"""
_DIST_BACKEND = {"cuda": "nccl", "cpu": "gloo"}
def __init__(self,
physical_mesh_id: torch.Tensor,
mesh_shape: torch.Size = None,
@ -37,48 +47,140 @@ class DeviceMesh:
mesh_alpha: List[float] = None,
mesh_beta: List[float] = None,
init_process_group: bool = False,
need_flatten: bool = True):
self.physical_mesh_id = physical_mesh_id
device: str = 'cuda'):
# ============================
# Physical & Logical Mesh IDs
# ============================
self._physical_mesh_id = physical_mesh_id
assert physical_mesh_id.dim() == 1, "physical_mesh_id should be a 1D tensor."
# logical mesh ids can be obtained via two ways
# 1. provide physical mesh id and provide mesh shape
# 2. directly supply the logical mesh id
assert mesh_shape is None or logical_mesh_id is None, \
"Only one of mesh_shape and logical_mesh_id can be specified." \
"Logical mesh IDs are obtained from either mesh_shape + phyiscal_mesh_id or directly from the user-supplied logical_mesh_id"
if logical_mesh_id is None:
self.mesh_shape = mesh_shape
self._logical_mesh_id = self.physical_mesh_id.reshape(self.mesh_shape)
self._logical_mesh_id = self._physical_mesh_id.reshape(self.mesh_shape)
else:
self._logical_mesh_id = logical_mesh_id
self.mesh_shape = self._logical_mesh_id.shape
# map global rank into logical rank
self.convert_map = {}
self._global_rank_to_logical_rank_map(self._logical_mesh_id, [])
# ensure two things:
# 1. logical and physical mesh IDs should contain the same elements
# 2. there is no duplicate IDs in each mesh, e.g. [2, 2] is not allowed
assert torch.equal(torch.unique(self._physical_mesh_id), torch.unique(self.logical_mesh_id)), \
"physical and logical mesh IDs should contain the same elements, please check if you have consistent physical_mesh_id and logical_mesh_id."
assert torch.unique(self._physical_mesh_id).numel() == self._physical_mesh_id.numel(), \
"Found duplicate IDs in the phyiscal_mesh_id and this is not allowed, please check your physical_mesh_id again."
assert torch.unique(self.logical_mesh_id).numel() == self.logical_mesh_id.numel(), \
"Found duplicate IDs in the logical_mesh_id and this is not allowed, please check your logical_mesh_id again."
# ===============================================
# coefficient for alpha-beta communication model
# alpha is latency and beta is bandwidth
# ===============================================
# if the values are not provided, we assume they are 1 for simplicity
if mesh_alpha is None:
mesh_alpha = [1] * len(self.mesh_shape)
if mesh_beta is None:
mesh_beta = [1] * len(self.mesh_shape)
self.mesh_alpha = tuple(mesh_alpha)
self.mesh_beta = tuple(mesh_beta)
self.init_process_group = init_process_group
self.need_flatten = need_flatten
if self.init_process_group:
self.process_groups_dict = self.create_process_groups_for_logical_mesh()
if self.need_flatten and self._logical_mesh_id.dim() > 1:
self.flatten_device_mesh = self.flatten()
# Create a new member `flatten_device_meshes` to distinguish from original flatten methods (Because I'm not sure if there are functions that rely on the self.flatten())
# self.flatten_device_meshes = FlattenDeviceMesh(self.physical_mesh_id, self.mesh_shape, self.mesh_alpha,
# self.mesh_beta)
# ensure the alpha and beta have the same shape
assert len(self.mesh_alpha) == len(self.mesh_beta), \
"mesh_alpha and mesh_beta should have the same length, please check your mesh_alpha and mesh_beta again."
# =========================
# Device for Process Group
# =========================
self._device = device
self._dist_backend = self._DIST_BACKEND[device]
# =========================
# Process Group Management
# =========================
# the _global_to_local_rank_mapping is structured as follows
# {
# <global-rank>: [ <local-rank-on-axis-0>, <local-rank-on-axis-1>, <local-rank-on-axis-2>, ...]
# }
self._global_to_local_rank_mapping = dict()
self._init_global_to_logical_rank_mapping(mapping=self._global_to_local_rank_mapping,
tensor=self.logical_mesh_id)
# create process group
self._process_group_dict = {}
self._ranks_in_the_process_group = {}
self._global_rank_of_current_process = None
self._is_initialized = False
# initialize process group if specified
self._init_ranks_in_the_same_group()
self._init_process_group = init_process_group
if init_process_group:
self.init_logical_process_group()
@property
def shape(self):
def shape(self) -> torch.Size:
"""
Return the shape of the logical mesh.
"""
return self.mesh_shape
@property
def num_devices(self):
return reduce(operator.mul, self.physical_mesh_id.shape, 1)
def num_devices(self) -> int:
"""
Return the number of devices contained in the device mesh.
"""
return reduce(operator.mul, self._physical_mesh_id.shape, 1)
@property
def logical_mesh_id(self):
def logical_mesh_id(self) -> torch.Tensor:
"""
Return the logical mesh id.
"""
return self._logical_mesh_id
def __deepcopy__(self, memo):
def get_process_group(self, axis: int, global_rank: int = None) -> ProcessGroup:
"""
Return the process group on the specified axis.
Args:
axis (int): the axis of the process group.
global_rank (int, optional): the global rank of the process group. If not specified, the current process is used. (default: None)
"""
if global_rank is None:
global_rank = self._global_rank_of_current_process
return self._process_group_dict[global_rank][axis]
def get_process_group_for_all_axes(self, global_rank: int = None) -> Dict[int, ProcessGroup]:
"""
Return the process groups for all axes.
Args:
global_rank (int, optional): the global rank of the process
"""
if global_rank is None:
global_rank = self._global_rank_of_current_process
return self._process_group_dict[global_rank]
def get_ranks_in_process_group(self, axis: int, global_rank: int = None) -> List[int]:
"""
Return the ranks in the process group on the specified axis.
Args:
axis (int): the axis of the process group.
global_rank (int, optional): the global rank of the process
"""
if global_rank is None:
global_rank = self._global_rank_of_current_process
return self._ranks_in_the_process_group[global_rank][axis]
def __deepcopy__(self, memo) -> "DeviceMesh":
cls = self.__class__
result = cls.__new__(cls)
memo[id(self)] = result
@ -86,111 +188,206 @@ class DeviceMesh:
if k != 'process_groups_dict':
setattr(result, k, __import__("copy").deepcopy(v, memo))
else:
# process group cannot be copied
# thus, we share them directly
setattr(result, k, v)
return result
def _init_global_to_logical_rank_mapping(self,
mapping: Dict,
tensor: torch.Tensor,
index_list: List[int] = []) -> Dict[int, List[int]]:
"""
Build a global rank to local rank mapping for each process group in different axis in the logical device mesh.
Args:
mapping (Dict): a dictionary that maps the global rank to the local rank in the logical device mesh.
tensor (torch.Tensor): the tensor that contains the logical mesh ids.
index_list (List[int])
Returns:
mapping (Dict): a dictionary that maps the global rank to the local rank in the logical device mesh.
The value is a list of integers and each integer represents the local rank in the indexed axis.
"""
for index, inner_tensor in enumerate(tensor):
# index means the local rank in the current axis
# inner_tensor refers to the processes with the same local rank
if inner_tensor.numel() == 1:
# if the inner_tensor only has one element, it means that
# it already reaches the last axis
# we append its local_rank in the last axis to the index_list
# and assign to the mapping
# the value of the mapping is the the local rank at the indexed axis of the device mesh
mapping[int(inner_tensor)] = index_list + [index]
else:
# we recursively go into the function until we reach the last axis
# meanwhile, we should add the local rank in the current axis in the index_list
self._init_global_to_logical_rank_mapping(mapping, inner_tensor, index_list + [index])
def init_logical_process_group(self):
'''
This method is used to initialize the logical process groups which will be used in communications
among logical device mesh.
Note: if init_process_group set to False, you have to call this method manually. Otherwise,
the communication related function, such as ShapeConsistencyManager.apply will raise errors.
'''
# sanity check
assert dist.is_initialized, "The torch.distributed should be initialized before calling init_logical_process_group"
assert not self._is_initialized, "The logical process group has been initialized, do not call init_logical_process_group twice"
# update the global rank of the current process
self._global_rank_of_current_process = dist.get_rank()
duplicate_check_list = []
# flatten the global ranks to 1D list
global_rank_flatten_list = self._physical_mesh_id.view(-1).tolist()
for global_rank in global_rank_flatten_list:
# find the other ranks which are in the same process group as global_rank
ranks_in_same_group_by_axis = self._collate_global_ranks_in_same_process_group(global_rank)
for axis, ranks_in_same_group in ranks_in_same_group_by_axis.items():
# skip duplicated process group creation
if ranks_in_same_group in duplicate_check_list:
continue
# create the process group
pg_handler = dist.new_group(ranks=ranks_in_same_group, backend=self._dist_backend)
# keep this process group in the process_groups_dict
for rank in ranks_in_same_group:
if rank not in self._process_group_dict:
self._process_group_dict[rank] = dict()
self._process_group_dict[rank][axis] = pg_handler
# update the init flag
# we only allow init for once
self._is_initialized = True
def _init_ranks_in_the_same_group(self):
"""
This method is used to initialize the ranks_in_the_same_group dictionary.
"""
# flatten the global ranks to 1D list
global_rank_flatten_list = self._physical_mesh_id.view(-1).tolist()
for global_rank in global_rank_flatten_list:
# find the other ranks which are in the same process group as global_rank
ranks_in_same_group_by_axis = self._collate_global_ranks_in_same_process_group(global_rank)
for axis, ranks_in_same_group in ranks_in_same_group_by_axis.items():
# create dict for each rank
if global_rank not in self._process_group_dict:
self._ranks_in_the_process_group[global_rank] = dict()
# keep this process group in the process_groups_dict
self._ranks_in_the_process_group[global_rank][axis] = ranks_in_same_group
def global_rank_to_local_rank(self, rank: int, axis: int = None) -> Union[List[int], int]:
"""
Return the local rank of the given global rank in the logical device mesh.
Args:
rank (int): the global rank in the logical device mesh.
axis (int): the axis of the logical device mesh.
"""
local_ranks = self._global_to_local_rank_mapping[rank]
if axis:
return local_ranks[axis]
else:
return local_ranks
def _collate_global_ranks_in_same_process_group(self, global_rank):
'''
Give a global rank and return all global ranks involved in its associated process group in each axis.
Example:
```python
sphysical_mesh_id = torch.arange(0, 16)
mesh_shape = (4, 4)
# logical mesh will look like
# [[0, 1, 2, 3],
# [4, 5, 6, 7],
# [8, 9, 10,11],
# [12,13,14,15]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
print(device_mesh.collate_global_ranks_in_same_process_group(0))
# key is axis name
# value is a list of global ranks in same axis with rank 0
# output will look like
# {
0: [0, 4, 8, 12],
1: [0, 1, 2, 3]
# }
'''
# We have init the global rank to local rank by calling _init_global_to_logical_rank_mapping
# for self._global_to_local_rank_mapping
# the key is the global rank
# the value is the list of local ranks corresponding to the global rank with respect of different axes
# we can see the list of local ranks as the process coordinates for simplicity
# the key and value are all unique, therefore,
# we can also to use the coordinates to find the global rank
# =========================================================================
# Step 1
# find all the process_coordinates for processes in the same process group
# as the given global rank
# =========================================================================
# each
processes_in_the_same_process_group = {}
for dim in range(self.logical_mesh_id.dim()):
# iterate over the dimension size so that we can include all processes
# in the same process group in the given axis
# the _local_rank refers to the local rank of the current process
for _local_rank in range(self.logical_mesh_id.shape[dim]):
# if this dimension is not initailized yet,
# initialize it with an empty array
if dim not in processes_in_the_same_process_group:
processes_in_the_same_process_group[dim] = []
# get the local rank corresponding to the global rank
process_coordinates = self._global_to_local_rank_mapping[global_rank].copy()
# replace the local rank in the given dimension with the
# lcoal rank of the current process iterated
process_coordinates[dim] = _local_rank
processes_in_the_same_process_group[dim].append(process_coordinates)
# =================================================================
# Step 2
# Use local rank combination to find its corresponding global rank
# =================================================================
# the key of the dict is the axis
# the value is the list of global ranks which are in the same process group as the given global rank
global_pg_ranks = {}
for dim, coordinates_of_all_processes in processes_in_the_same_process_group.items():
global_pg_ranks[dim] = []
for process_coordinates in coordinates_of_all_processes:
# find the global rank by local rank combination
for _global_rank, _process_coordinates in self._global_to_local_rank_mapping.items():
if process_coordinates == _process_coordinates:
global_pg_ranks[dim].append(_global_rank)
return global_pg_ranks
def flatten(self):
"""
Flatten the logical mesh into an effective 1d logical mesh,
"""
flatten_mesh_shape_size = len(self.mesh_shape)
flatten_mesh_shape = [self.num_devices]
return DeviceMesh(self.physical_mesh_id,
return DeviceMesh(self._physical_mesh_id,
tuple(flatten_mesh_shape),
mesh_alpha=[max(self.mesh_alpha)] * (flatten_mesh_shape_size - 1),
mesh_beta=[max(self.mesh_beta)] * (flatten_mesh_shape_size - 1),
init_process_group=self.init_process_group,
need_flatten=False)
def _global_rank_to_logical_rank_map(self, tensor, index_list):
'''
This method is a helper function to build convert_map recursively.
'''
for index, inner_tensor in enumerate(tensor):
if inner_tensor.numel() == 1:
self.convert_map[int(inner_tensor)] = index_list + [index]
else:
self._global_rank_to_logical_rank_map(inner_tensor, index_list + [index])
def create_process_groups_for_logical_mesh(self):
'''
This method is used to initialize the logical process groups which will be used in communications
among logical device mesh.
Note: if init_process_group set to False, you have to call this method manually. Otherwise,
the communication related function, such as ShapeConsistencyManager.apply will raise errors.
'''
process_groups_dict = {}
check_duplicate_list = []
global_rank_flatten_list = self.physical_mesh_id.view(-1).tolist()
for global_rank in global_rank_flatten_list:
process_groups = self.global_rank_to_process_groups_with_global_rank(global_rank)
for axis, process_group in process_groups.items():
if axis not in process_groups_dict:
process_groups_dict[axis] = []
if process_group not in check_duplicate_list:
check_duplicate_list.append(process_group)
process_group_handler = dist.new_group(process_group)
process_groups_dict[axis].append((process_group, process_group_handler))
return process_groups_dict
def global_rank_to_logical_rank(self, rank):
return self.convert_map[rank]
def global_rank_to_process_groups_with_logical_rank(self, rank):
'''
Give a global rank and return all logical process groups of this rank.
for example:
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
mesh_shape = (4, 4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7],
# [8, 9, 10,11],
# [12,13,14,15]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
print(device_mesh.global_rank_to_process_groups_with_logical_rank(0))
output:
# key is axis name
# value is a list of logical ranks in same axis with rank 0
{0: [[0, 0], [1, 0], [2, 0], [3, 0]], 1: [[0, 0], [0, 1], [0, 2], [0, 3]]}
'''
process_groups = {}
for d in range(self.logical_mesh_id.dim()):
for replacer in range(self.logical_mesh_id.shape[d]):
if d not in process_groups:
process_groups[d] = []
process_group_member = self.convert_map[rank].copy()
process_group_member[d] = replacer
process_groups[d].append(process_group_member)
return process_groups
def global_rank_to_process_groups_with_global_rank(self, rank):
'''
Give a global rank and return all process groups of this rank.
for example:
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
mesh_shape = (4, 4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7],
# [8, 9, 10,11],
# [12,13,14,15]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
print(device_mesh.global_rank_to_process_groups_with_global_rank(0))
output:
# key is axis name
# value is a list of global ranks in same axis with rank 0
{0: [0, 4, 8, 12], 1: [0, 1, 2, 3]}
'''
logical_process_groups = self.global_rank_to_process_groups_with_logical_rank(rank)
process_groups = {}
for dim, logical_ranks in logical_process_groups.items():
process_groups[dim] = []
for logical_rank in logical_ranks:
for g_rank, l_rank in self.convert_map.items():
if l_rank == logical_rank:
process_groups[dim].append(g_rank)
return process_groups
init_process_group=self._init_process_group)
def all_gather_cost(self, num_bytes, mesh_dim):
num_devices = self.logical_mesh_id.shape[mesh_dim]
@ -212,38 +409,3 @@ class DeviceMesh:
penalty_factor = num_devices / 2.0
return (self.mesh_alpha[mesh_dim] + self.mesh_beta[mesh_dim] *
(num_devices - 1) / num_devices / num_devices * num_bytes * penalty_factor + 0.001)
class FlattenDeviceMesh(DeviceMesh):
def __init__(self, physical_mesh_id, mesh_shape, mesh_alpha=None, mesh_beta=None):
super().__init__(physical_mesh_id,
mesh_shape,
mesh_alpha,
mesh_beta,
init_process_group=False,
need_flatten=False)
# Different from flatten(), mesh_shape leaves unchanged, mesh_alpha and mesh_beta are scalars
self.mesh_alpha = max(self.mesh_alpha)
self.mesh_beta = min(self.mesh_beta)
# Different from original process_groups_dict, rank_list is not stored
self.process_number_dict = self.create_process_numbers_for_logical_mesh()
def create_process_numbers_for_logical_mesh(self):
'''
Build 1d DeviceMesh in column-major(0) and row-major(1)
for example:
mesh_shape = (2,4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7]]
# return {0: [0, 4, 1, 5, 2, 6, 3, 7], 1: [0, 1, 2, 3, 4, 5, 6, 7]}
'''
num_devices = reduce(operator.mul, self.mesh_shape, 1)
process_numbers_dict = {}
process_numbers_dict[0] = torch.arange(num_devices).reshape(self.mesh_shape).transpose(1, 0).flatten().tolist()
process_numbers_dict[1] = torch.arange(num_devices).reshape(self.mesh_shape).flatten().tolist()
return process_numbers_dict
def mix_gather_cost(self, num_bytes):
num_devices = reduce(operator.mul, self.mesh_shape, 1)
return (self.mesh_alpha + self.mesh_beta * (num_devices - 1) / num_devices * num_bytes + 0.1)

View File

@ -1,5 +1,5 @@
from types import MethodType
from typing import Callable, Optional, Union
from typing import Callable, Dict, Optional, Union
import torch
import torch.distributed as dist
@ -8,8 +8,9 @@ from torch import Tensor
from torch.utils._pytree import tree_map
from colossalai._analyzer._subclasses import MetaTensor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.d_tensor.d_tensor import DTensor
from colossalai.tensor.d_tensor.layout import Layout
from colossalai.tensor.d_tensor.sharding_spec import ShardingSpec
# reference: https://pytorch.org/cppdocs/notes/tensor_creation.html
_NORMAL_FACTORY = [
@ -172,7 +173,7 @@ class LazyTensor(torch.Tensor):
self.clean()
return _convert_cls(self, target)
def distribute(self, layout: Layout) -> torch.Tensor:
def distribute(self, device_mesh: DeviceMesh, sharding_spec: ShardingSpec) -> torch.Tensor:
"""Distribute the ``LazyTensor`` to ``torch.Tensor`` by modifying __class__ (inplace), according to the layout.
Args:
@ -183,7 +184,7 @@ class LazyTensor(torch.Tensor):
"""
target = self._materialize_data()
self.clean()
local_tensor = DTensor(target, layout).local_tensor
local_tensor = DTensor(target, device_mesh, sharding_spec).local_tensor
return _convert_cls(self, local_tensor)
def clean(self) -> None:
@ -536,7 +537,10 @@ class LazyInitContext:
return _apply_to_lazy_module(module, apply_fn, verbose)
@staticmethod
def distribute(module: nn.Module, layout_dict: dict, verbose: bool = False) -> nn.Module:
def distribute(module: nn.Module,
device_mesh: DeviceMesh,
sharding_spec_dict: Dict[str, ShardingSpec],
verbose: bool = False) -> nn.Module:
"""Distribute all ``nn.Parameter`` from ``LazyTensor``. This function will modify the module in-place.
Args:
@ -546,7 +550,7 @@ class LazyInitContext:
"""
def apply_fn(name: str, p: LazyTensor):
p.distribute(layout_dict[name])
p.distribute(device_mesh, sharding_spec_dict[name])
return _apply_to_lazy_module(module, apply_fn, verbose)

View File

@ -16,69 +16,66 @@ def _all_gather(tensor, comm_spec):
'''
Implement all gather operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis])
]
# without this contiguous operation, the all gather may get some unexpected results.
tensor = tensor.contiguous()
dist.all_gather(tensor_list, tensor, group=process_group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
process_groups = comm_spec.device_mesh.get_process_group_for_all_axes()
process_group = process_groups[comm_spec.logical_process_axis]
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis])
]
# without this contiguous operation, the all gather may get some unexpected results.
tensor = tensor.contiguous()
dist.all_gather(tensor_list, tensor, group=process_group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
def _split(tensor, comm_spec):
'''
Implement shard operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, _ in process_groups_list:
if dist.get_rank() in rank_list:
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
output = torch.narrow(tensor, dim, start, length).contiguous()
return output
process_groups = comm_spec.device_mesh.get_process_group_for_all_axes()
process_group = process_groups[comm_spec.logical_process_axis]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // dist.get_world_size(process_group)
start = length * dist.get_rank(process_group)
output = torch.narrow(tensor, dim, start, length).contiguous()
return output
def _all_to_all(tensor, comm_spec):
'''
Implement all to all operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
process_groups = comm_spec.device_mesh.get_process_group_for_all_axes()
process_group = process_groups[comm_spec.logical_process_axis]
world_size = dist.get_world_size(process_group)
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // world_size
new_shape = torch.Size(new_shape)
output_tensor_list = [torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(world_size)]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // world_size
input_tensor_list = [torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(world_size)]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
def _all_reduce(tensor, comm_spec, async_op=False):
'''
Implement all reduce operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
return tensor
process_groups = comm_spec.device_mesh.get_process_group_for_all_axes()
process_group = process_groups[comm_spec.logical_process_axis]
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
return tensor
def _mix_gather(tensor, comm_spec):
@ -414,7 +411,7 @@ class CommSpec:
self.forward_only = forward_only
if isinstance(self.logical_process_axis, list):
if not mix_gather:
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
self.device_mesh = self.sharding_spec.device_mesh.flatten()
self.logical_process_axis = 0
else:
self.device_meshes = self.sharding_spec.device_mesh.flatten_device_meshes

View File

@ -0,0 +1,103 @@
# 🔢 Distributed Tensor
## 📚 Table of Contents
- [🔢 Distributed Tensor](#-distributed-tensor)
- [📚 Table of Contents](#-table-of-contents)
- [🔗 Introduction](#-introduction)
- [📝 Design](#-design)
- [🔨 Usage](#-usage)
- [🎈 Progress Log](#-progress-log)
## 🔗 Introduction
Distributed tensor is a type of tensor that is distributed across multiple devices. It is a wrapper of PyTorch tensor, and it is used to support distributed training.
It can represent the device topology and tensor placement over the devices in the topology. It also provides a set of APIs to manipulate the distributed tensor.
## 📝 Design
Our implementation is inspired by the work [Alpa](https://arxiv.org/abs/2201.12023), which unifies data parallelism and tensor parallelism as intra-op parallelism. It uses notations `S` to represent the sharded dimension and `R` to represent the replicated dimension. For example, given a 2D matrix, `[S, R]` represents the tensor is sharded over the first dimension.
Each sharded dimension will have a subscript to represent its placement over the devices. Assuming we have 4 GPUs and the GPUs are arranged in a 2 x 2 manner. Let's say we have a 2D matrix like below:
```text
[1, 2, 3, 4 ]
A = [4, 5, 6, 7 ]
[8, 9, 10, 11]
[12, 13, 14, 15]
```
`[S0, R]` would mean that the first dimension is sharded over the rows in the device topology.
```text
| --------------------—————————————————————-|
| | |
| [1, 2, 3, 4 ] | [1, 2, 3, 4 ] |
| [4, 5, 6, 7 ] | [4, 5, 6, 7 ] |
| | |
| --------------------——————————————————-----
| | |
| [8, 9, 10, 11] | [8, 9, 10, 11] |
| [12, 13, 14, 15] | [12, 13, 14, 15] |
| | |
| --------------------——————————————————-----
```
`[S01, R]` would mean that the first dimension is sharded over both the row and column in the device topology.
```text
| --------------------—————————————————————-|
| | |
| [1, 2, 3, 4 ] | [4, 5, 6, 7 ] |
| | |
| --------------------——————————————————-----
| | |
| [8, 9, 10, 11] | [12, 13, 14, 15] |
| | |
| --------------------——————————————————-----
```
## 🔨 Usage
A sample API usage is given below.
```python
import torch
import colossalai
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.d_tensor import DTensor, ShardingSpec
colossalai.launch_from_torch(config={})
# define your device mesh
# assume you have 4 GPUs
physical_mesh_id = torch.arange(0, 4).reshape(1, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# define a tensor
a = torch.rand(16, 32).cuda()
# create sharding spec for the tensor
# assume the sharding spec is [S0, R]
dim_partition_dict = {0: [0]}
sharding_spec = ShardingSpec(a.dim(), dim_partition_dict)
# create a distributed tensor
d_tensor = DTensor(a, device_mesh, sharding_spec)
print(d_tensor)
global_tensor = d_tensor.to_global()
print(global_tensor)
```
## 🎈 Progress Log
- [x] Support layout conversion
- [x] Support sharding on 2D device mesh
- [ ] Support sharding on 3D device mesh
- [ ] Support sharding 4D device mesh
- [ ] Support sharding info saving and offline tensor merge (we can save tensor as dtensor and gather the tensors back to the global tensor based on the sharding info in a single process in CPU, useful for distributed training checkpoint load and save.)

View File

@ -0,0 +1,4 @@
from .d_tensor import DTensor
from .sharding_spec import ShardingSpec
__all__ = ['DTensor', 'ShardingSpec']

View File

@ -24,12 +24,12 @@ class CommSpec:
'''
Communication spec is used to record the communication action. It converts the communication spec
to real action which will be used in runtime. It contains comm_pattern to determine the
communication method, process_groups_dict to determine the process groups, gather_dim and shard_dim
communication method, process_group_dict to determine the process groups, gather_dim and shard_dim
to determine the buffer shape, and logical_process_axis
Argument:
comm_pattern(CollectiveCommPattern): describe the communication method used in this spec.
process_groups_dict(Dict): A dict which contains the process groups used to apply this CommSpec.
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
process_group_dict(Dict): A dict which contains the process groups used to apply this CommSpec.
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
@ -37,7 +37,7 @@ class CommSpec:
def __init__(self,
comm_pattern: CollectiveCommPattern,
process_groups_dict: Dict,
process_group_dict: Dict,
gather_dim: int = None,
shard_dim: int = None,
logical_process_axis: int = None):
@ -45,7 +45,7 @@ class CommSpec:
self.gather_dim = gather_dim
self.shard_dim = shard_dim
self.logical_process_axis = logical_process_axis
self.process_groups_dict = process_groups_dict
self.process_group_dict = process_group_dict
def __repr__(self):
res_list = ["CommSpec:("]
@ -92,68 +92,56 @@ def _all_gather(tensor: torch.Tensor, comm_spec: CommSpec):
'''
Implement all gather operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
# without this contiguous operation, the all gather may get some unexpected results.
tensor = tensor.contiguous()
dist.all_gather(tensor_list, tensor, group=process_group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis]
world_size = dist.get_world_size(process_group)
tensor_list = [torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(world_size)]
# without this contiguous operation, the all gather may get some unexpected results.
tensor = tensor.contiguous()
dist.all_gather(tensor_list, tensor, group=process_group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
def _split(tensor: torch.Tensor, comm_spec: CommSpec):
'''
Implement shard operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, _ in process_groups_list:
if dist.get_rank() in rank_list:
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
output = torch.narrow(tensor, dim, start, length).contiguous()
return output
process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // dist.get_world_size(process_group)
start = length * dist.get_rank(process_group)
output = torch.narrow(tensor, dim, start, length).contiguous()
return output
def _all_to_all(tensor: torch.Tensor, comm_spec: CommSpec):
'''
Implement all to all operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis]
world_size = dist.get_world_size(process_group)
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // world_size
new_shape = torch.Size(new_shape)
output_tensor_list = [torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(world_size)]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // world_size
input_tensor_list = [torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(world_size)]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
def _all_reduce(tensor: torch.Tensor, comm_spec: CommSpec, async_op: bool = False):
'''
Implement all reduce operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
return tensor
process_group = comm_spec.process_group_dict[comm_spec.logical_process_axis]
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
return tensor
class _ReduceGrad(torch.autograd.Function):
@ -269,7 +257,7 @@ class _AllToAll(torch.autograd.Function):
def forward(ctx, input_, comm_spec):
output = _all_to_all(input_, comm_spec)
comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern,
process_groups_dict=comm_spec.process_groups_dict,
process_group_dict=comm_spec.process_group_dict,
gather_dim=comm_spec.shard_dim,
shard_dim=comm_spec.gather_dim,
logical_process_axis=comm_spec.logical_process_axis)

View File

@ -3,55 +3,119 @@ from typing import Optional
import torch
from torch.utils._pytree import tree_map
from colossalai.device.device_mesh import DeviceMesh
from .layout import Layout
from .layout_converter import LayoutConverter, to_global
from .sharding_spec import ShardingSpec
__all__ = ['DTensor', 'distribute_tensor', 'distribute_module', 'construct_default_sharding_spec']
layout_converter = LayoutConverter()
class DTensor(torch.Tensor):
"""
DTensor stands for distributed tensor. It is a subclass of `torch.Tensor` and contains meta information
about the tensor distribution. The meta information includes the device mesh, the sharding specification,
and the entire shape of the tensor.
def __init__(self, local_tensor: torch.Tensor, dist_layout: Layout):
self.local_tensor = local_tensor
self.data_type = local_tensor.dtype
self.entire_shape = local_tensor.shape
During runtime, we will not directly use the DTensor objects for computation. Instead, we will only use the
`DTensor.local_tensor` for computation. The `DTensor.local_tensor` is the local tensor in the current rank.
In this way, all tensors involved in computation will only be native PyTorch tensors.
Example:
```python
from colossalai.device import DeviceMesh
# define your device mesh
# assume you have 4 GPUs
physical_mesh_id = torch.arange(0, 4).reshape(1, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
# define a tensor
x = torch.rand(16, 32)
# create sharding spec for the tensor
# assume the sharding spec is [S, R]
dim_partition_dict = {
0: 1
}
sharding_spec = ShardingSpec(a.dim(), dim_partition_dict)
# create a distributed tensor
d_tensor = DTensor(x, device_mesh, sharding_spec)
```
Args:
tensor (`torch.Tensor`): the unsharded tensor.
device_mesh (`DeviceMesh`): the device mesh for abstraction of the compute devices.
sharding_spec (`ShardingSpec`): the sharding specification which describes how the tensor will be sharded.
"""
def __init__(self, tensor: torch.Tensor, device_mesh: DeviceMesh, sharding_spec: ShardingSpec):
# ensure this tensor is not a DTensor
assert not isinstance(tensor, DTensor), 'The input tensor should not be a DTensor.'
# store meta info
self.local_tensor = tensor
self.data_type = tensor.dtype
self.global_shape = tensor.shape
# create distributed layout
dist_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec, global_shape=self.global_shape)
self.dist_layout = dist_layout
# shard the tensor
self._apply_layout()
@staticmethod
def __new__(cls, local_tensor, layout):
return torch.Tensor._make_subclass(cls, local_tensor, local_tensor.requires_grad)
def __new__(cls, tensor, *args, **kwargs):
return torch.Tensor._make_subclass(cls, tensor, tensor.requires_grad)
def __repr__(self):
return f"DTensor({self.to_global()}, {self.dist_layout})"
return f"DTensor(\n{self.to_global()}\n{self.dist_layout}"
def __str__(self):
return self.__repr__()
def layout_convert(self, target_layout):
def layout_convert(self, device_mesh: DeviceMesh, sharding_spec: ShardingSpec) -> None:
'''
Convert the layout of the tensor from source_spec to target_spec.
This will update the `local_tensor` and `dist_layout` in place.
Args:
target_layout (Layout): the target layout specification.
'''
self.local_tensor = layout_converter.apply(self.local_tensor, self.dist_layout, target_layout)
target_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec, global_shape=self.global_shape)
self.local_tensor = layout_converter.apply(tensor=self.local_tensor,
source_layout=self.dist_layout,
target_layout=target_layout)
self.dist_layout = target_layout
def _apply_layout(self):
'''
Apply the layout to the local tensor during initializing process.
'''
# layout converter requires a source and target laytout
# we construct the source layer for an unsharded tensor
# and use self.dist_layer as the targer layout for the sharded tensor
source_spec = construct_default_sharding_spec(self.local_tensor)
source_layout = Layout(device_mesh=self.dist_layout.device_mesh,
device_type=self.dist_layout.device_type,
sharding_spec=source_spec,
entire_shape=self.entire_shape)
self.local_tensor = layout_converter.apply(self.local_tensor, source_layout, self.dist_layout)
global_shape=self.global_shape)
self.local_tensor = layout_converter.apply(tensor=self.local_tensor,
source_layout=source_layout,
target_layout=self.dist_layout)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
# convert all DTensors to native pytorch tensors
# so that operations will be conducted on native tensors
def filter_arg(arg):
if isinstance(arg, DTensor):
return arg.local_tensor
@ -60,9 +124,9 @@ class DTensor(torch.Tensor):
args = tree_map(filter_arg, args)
kwargs = tree_map(filter_arg, kwargs)
# if we want to convert the result into DTensor, we need to infer the layout of result from the layout of input tensors
# and op type.
# NOTE: if we want to convert the result into DTensor, we need to infer the layout of result from the layout of input tensors
# and op type.
return func(*args, **kwargs)
@property
@ -85,7 +149,6 @@ class DTensor(torch.Tensor):
'''
self.local_tensor = self.local_tensor.to(*args, **kwargs)
self.data_type = self.local_tensor.dtype
self.dist_layout.device_type = self.local_tensor.device
# TODO: update the device mesh process groups or we should just cache
# both the cpu process groups and the cuda process groups?
return self
@ -98,7 +161,7 @@ class DTensor(torch.Tensor):
def to_global(self):
'''
Recover the global tensor from the distributed tensor.
Recover the global tensor from the distributed tensor by returning a new `torch.Tensor` object.
Note: This function will all_gather the local tensor to the global tensor and it
will not change the layout of the DTensor. This function is mainly used for debugging or
@ -107,24 +170,29 @@ class DTensor(torch.Tensor):
return to_global(self.local_tensor, self.dist_layout)
def distribute_tensor(local_tensor: torch.Tensor, dist_layout: Layout) -> DTensor:
def distribute_tensor(tensor: torch.Tensor, device_mesh: DeviceMesh, sharding_spec: ShardingSpec) -> DTensor:
'''
Distribute the local tensor to the distributed tensor according to the dist_layout specified.
Args:
local_tensor: tensor to be distributed.
dist_layout: the layout specification of the distributed tensor.
tensor (`torch.Tensor`): tensor to be distributed.
device_mesh (`DeviceMesh`): the device mesh for abstraction of the compute devices.
sharding_spec (`ShardingSpec`): the sharding specification which describes how the tensor will be sharded.
Returns:
A 'DTensor' object.
'''
return DTensor(local_tensor, dist_layout)
return DTensor(tensor, device_mesh, sharding_spec)
def distribute_module(module: torch.nn.Module, partition_fn: Optional[callable] = None) -> torch.nn.Module:
'''
This function converts all the parameters in the module to DTensor(DParam).
Args:
module (`torch.nn.Module`): the module to be distributed.
partition_fn (callable): the partition function which will be used to partition the parameters.
Note: This function is subject to future change as the DParam has not been implemented yet.
'''
for name, param in module.named_parameters():
@ -138,5 +206,11 @@ def distribute_module(module: torch.nn.Module, partition_fn: Optional[callable]
def construct_default_sharding_spec(tensor: torch.Tensor,) -> ShardingSpec:
'''
Construct the default sharding specification for the tensor.
Args:
tensor (`torch.Tensor`): the tensor to be sharded.
Returns:
A `ShardingSpec` object without any sharding specified.
'''
return ShardingSpec(dim_size=tensor.dim(), dim_partition_dict={})

View File

@ -11,28 +11,32 @@ from .sharding_spec import ShardingSpec
class Layout:
"""Layout of a tensor.
"""
Layout of a tensor refers to the tensor placement on the device mesh and how the tensor is sharded over the devices.
Attributes:
device_mesh: the device mesh to store the tensor distributed.
device_type: the type of the device mesh, e.g. 'cpu' or 'cuda'.
sharding_spec: the sharding specification to describe how the tensor is sharded.
entire_shape: the entire shape of the global tensor.
Args:
device_mesh (`DeviceMesh`): the device mesh to store the tensor distributed.
sharding_spec (`ShardingSpec`): the sharding specification to describe how the tensor is sharded.
global_shape (`torch.Size`): the entire shape of the global tensor.
"""
def __init__(self, device_mesh: DeviceMesh, device_type: torch.device, sharding_spec: ShardingSpec,
entire_shape: torch.Size):
def __init__(self, device_mesh: DeviceMesh, sharding_spec: ShardingSpec, global_shape: torch.Size):
self.device_mesh = device_mesh
self.device_type = device_type
self.sharding_spec = sharding_spec
self.entire_shape = entire_shape
self.global_shape = global_shape
self._sanity_check()
def __hash__(self) -> int:
return hash(f'{self.sharding_spec}')
def get_sharded_shape_per_device(self):
sharded_shape = list(self.entire_shape)
def get_sharded_shape_per_device(self) -> torch.Size:
"""
Compute the shape of the sharded tensor on each device.
Returns:
`torch.Size`: the shape of the sharded tensor on each device.
"""
sharded_shape = list(self.global_shape)
for dim, shard_list in self.sharding_spec.dim_partition_dict.items():
mesh_list = [self.device_mesh.mesh_shape[mesh_dim] for mesh_dim in shard_list]
shard_partitions = reduce(operator.mul, mesh_list, 1)
@ -56,7 +60,7 @@ class Layout:
# make sure that the sharding for a dimension is divisible by the number of devices
for dim, shard_list in sharding_spec.dim_partition_dict.items():
tensor_dim_size = self.entire_shape[dim]
tensor_dim_size = self.global_shape[dim]
num_devices = 1
for element in shard_list:

View File

@ -3,10 +3,8 @@ from copy import deepcopy
from dataclasses import dataclass
from typing import Dict, List, Tuple
import numpy as np
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.tensor.d_tensor.comm_spec import *
from colossalai.tensor.d_tensor.layout import Layout
@ -28,13 +26,21 @@ class LayoutConverterOptions:
pass
def to_global(distributed_tensor: torch.Tensor, layout: Layout) -> torch.Tensor:
def to_global(distributed_tensor: "DTensor", layout: Layout) -> torch.Tensor:
"""
Convert a distributed tensor to the global tensor with the given layout.
This function returns a native `torch.Tensor` object.
Args:
distributed_tensor (`DTensor`): the distributed tensor to be converted.
layout (`Layout`): the target layout specification.
"""
layout_converter = LayoutConverter()
global_sharding_spec = ShardingSpec(distributed_tensor.dim(), {})
global_layout = Layout(device_mesh=layout.device_mesh,
device_type=layout.device_type,
sharding_spec=global_sharding_spec,
entire_shape=layout.entire_shape)
global_shape=layout.global_shape)
with torch.no_grad():
global_tensor = layout_converter.apply(distributed_tensor, layout, global_layout)
return global_tensor
@ -49,6 +55,9 @@ def set_layout_converting_options(options: LayoutConverterOptions):
class LayoutConverter(metaclass=SingletonMeta):
"""
LayoutConverter is a singleton class which converts the layout of a distributed tensor.
"""
def __init__(self):
self._options = None
@ -91,15 +100,14 @@ class LayoutConverter(metaclass=SingletonMeta):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = (4, 4, 4)
global_shape = (4, 4, 4)
dim_partition_dict = {0: [0], 1: [1]}
# [S0,S1,R]
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec,
entire_shape=entire_shape)
global_shape=global_shape)
rst_dict = layout_converter.all_gather_transform_layouts(layout)
for layout, comm_spec in rst_dict.items():
@ -112,7 +120,12 @@ class LayoutConverter(metaclass=SingletonMeta):
valid_spec_dict = {}
comm_pattern = CollectiveCommPattern.GATHER_FWD_SPLIT_BWD
source_spec = source_layout.sharding_spec
process_groups_dict = source_layout.device_mesh.process_groups_dict
# the key of the dict is the axis
# the value is the process group
current_rank = source_layout.device_mesh._global_rank_of_current_process
process_group_dict = source_layout.device_mesh._process_group_dict[current_rank]
for target_pair in source_spec.dim_partition_dict.items():
shard_list = all_gather_simulator(target_pair)
index = target_pair[0]
@ -130,7 +143,7 @@ class LayoutConverter(metaclass=SingletonMeta):
logical_process_axis = target_pair[1][-1]
comm_spec = CommSpec(
comm_pattern,
process_groups_dict=process_groups_dict,
process_group_dict=process_group_dict,
gather_dim=gather_dim,
# shard_dim will be used during backward
shard_dim=gather_dim,
@ -141,8 +154,7 @@ class LayoutConverter(metaclass=SingletonMeta):
new_sharding_spec = ShardingSpec(source_spec.dims, dim_partition_dict=new_dim_partition_dict)
new_layout = Layout(device_mesh=source_layout.device_mesh,
sharding_spec=new_sharding_spec,
device_type=source_layout.device_type,
entire_shape=source_layout.entire_shape)
global_shape=source_layout.global_shape)
valid_spec_dict[new_layout] = comm_spec
except LayoutException:
@ -167,15 +179,14 @@ class LayoutConverter(metaclass=SingletonMeta):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = (4, 4, 4)
global_shape = (4, 4, 4)
dim_partition_dict = {0: [0], 1: [1]}
# [S0,S1,R]
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec,
entire_shape=entire_shape)
global_shape=global_shape)
rst_dict = layout_converter.all_to_all_transform_layout(layout)
for layout, comm_spec in rst_dict.items():
@ -188,7 +199,12 @@ class LayoutConverter(metaclass=SingletonMeta):
'''
valid_spec_dict = {}
comm_pattern = CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD
process_groups_dict = source_layout.device_mesh.process_groups_dict
# the key of the dict is the axis
# the value is the process group
current_rank = source_layout.device_mesh._global_rank_of_current_process
process_group_dict = source_layout.device_mesh._process_group_dict[current_rank]
source_spec = source_layout.sharding_spec
tensor_dims = source_spec.dims
for f_index in range(tensor_dims - 1):
@ -229,7 +245,7 @@ class LayoutConverter(metaclass=SingletonMeta):
shard_dim = f_index
logical_process_axis = b_target_pair[1][-1]
comm_spec = CommSpec(comm_pattern,
process_groups_dict,
process_group_dict=process_group_dict,
gather_dim=gather_dim,
shard_dim=shard_dim,
logical_process_axis=logical_process_axis)
@ -252,8 +268,7 @@ class LayoutConverter(metaclass=SingletonMeta):
new_sharding_spec = ShardingSpec(source_spec.dims, dim_partition_dict=new_dim_partition_dict)
new_layout = Layout(device_mesh=source_layout.device_mesh,
sharding_spec=new_sharding_spec,
device_type=source_layout.device_type,
entire_shape=source_layout.entire_shape)
global_shape=source_layout.global_shape)
valid_spec_dict[new_layout] = comm_spec
except LayoutException:
pass
@ -278,16 +293,15 @@ class LayoutConverter(metaclass=SingletonMeta):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = (4, 4, 4)
global_shape = (4, 4, 4)
dim_partition_dict = {0: [0]}
# [S0,R,R]
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec,
entire_shape=entire_shape)
global_shape=global_shape)
rst_dict = layout_converter.shard_transform_layout(layout)
for layout, comm_spec in rst_dict.items():
@ -301,7 +315,11 @@ class LayoutConverter(metaclass=SingletonMeta):
valid_spec_dict = {}
comm_pattern = CollectiveCommPattern.SPLIT_FWD_GATHER_BWD
source_spec = source_layout.sharding_spec
process_groups_dict = source_layout.device_mesh.process_groups_dict
# the key of the dict is the axis
# the value is the process group
current_rank = source_layout.device_mesh._global_rank_of_current_process
process_group_dict = source_layout.device_mesh._process_group_dict[current_rank]
# legal sharding dims means the mesh_id is still available to use.
legal_sharding_dims = [i for i in range(len(source_layout.device_mesh.mesh_shape))]
@ -329,7 +347,7 @@ class LayoutConverter(metaclass=SingletonMeta):
shard_dim = index
logical_process_axis = shard_list[-1]
comm_spec = CommSpec(comm_pattern,
process_groups_dict,
process_group_dict=process_group_dict,
gather_dim=shard_dim,
shard_dim=shard_dim,
logical_process_axis=logical_process_axis)
@ -340,8 +358,7 @@ class LayoutConverter(metaclass=SingletonMeta):
dim_partition_dict=new_dim_partition_dict)
new_layout = Layout(device_mesh=source_layout.device_mesh,
sharding_spec=new_sharding_spec,
device_type=source_layout.device_type,
entire_shape=source_layout.entire_shape)
global_shape=source_layout.global_shape)
valid_spec_dict[new_layout] = comm_spec
except LayoutException:
pass
@ -399,7 +416,7 @@ class LayoutConverter(metaclass=SingletonMeta):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = (4, 4, 4)
global_shape = (4, 4, 4)
dim_partition_source = {1: [0, 1]}
dim_partition_target = {0: [0, 1]}
@ -407,16 +424,14 @@ class LayoutConverter(metaclass=SingletonMeta):
# [R,S01,R]
sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source)
source_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_source,
entire_shape=entire_shape)
global_shape=global_shape)
# [S01,R,R]
sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target)
target_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_target,
entire_shape=entire_shape)
global_shape=global_shape)
transform_path, comm_action_sequence = layout_converter.layout_converting(source_layout, target_layout)
transform_path_str = '->'.join([str(layout.sharding_spec.sharding_sequence) for layout in transform_path])
@ -505,21 +520,19 @@ class LayoutConverter(metaclass=SingletonMeta):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = (4, 4, 4)
global_shape = (4, 4, 4)
# [S0,R,R]
sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source)
source_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_source,
entire_shape=entire_shape)
global_shape=global_shape)
# [R,S0,R]
sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target)
target_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_target,
entire_shape=entire_shape)
global_shape=global_shape)
if rank in (0, 1):
sharded_tensor_0 = torch.zeros(2, 1)
@ -554,3 +567,4 @@ class LayoutConverter(metaclass=SingletonMeta):
for comm_spec in comm_action_sequence:
tensor = comm_spec.covert_spec_to_action(tensor)
return tensor
return tensor

View File

@ -1,20 +1,19 @@
from colossalai.device.device_mesh import DeviceMesh
import torch
from colossalai.device.device_mesh import DeviceMesh
def test_device_mesh():
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
physical_mesh_id = torch.arange(0, 16)
mesh_shape = (4, 4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7],
# [8, 9, 10,11],
# [12,13,14,15]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
assert device_mesh.convert_map[5] == [1, 1]
assert device_mesh.convert_map[11] == [2, 3]
assert device_mesh.global_rank_to_process_groups_with_logical_rank(0)[0] == [[0, 0], [1, 0], [2, 0], [3, 0]]
assert device_mesh.global_rank_to_process_groups_with_logical_rank(2)[1] == [[0, 0], [0, 1], [0, 2], [0, 3]]
assert device_mesh.global_rank_to_process_groups_with_global_rank(2)[1] == [0, 1, 2, 3]
assert device_mesh.global_rank_to_local_rank(5) == [1, 1]
assert device_mesh.global_rank_to_local_rank(11) == [2, 3]
assert device_mesh.get_ranks_in_process_group(axis=1, global_rank=2) == [0, 1, 2, 3]
if __name__ == '__main__':

View File

@ -20,16 +20,12 @@ def check_layer(rank, world_size, port):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
logical_pg_dict = {0: [[0, 2], [1, 3]], 1: [[0, 1], [2, 3]]}
logical_process_groups = device_mesh.process_groups_dict
for mesh_dim, pgs in logical_pg_dict.items():
for index, pg in enumerate(pgs):
if rank in pg:
tensor = torch.ones(4).cuda()
group = logical_process_groups[mesh_dim][index][1]
dist.all_reduce(tensor, op=ReduceOp.SUM, group=group)
assert tensor.equal(tensor_to_check)
for axis in range(len(mesh_shape)):
tensor = torch.ones(4).cuda()
pg = device_mesh.get_process_group(axis=axis)
dist.all_reduce(tensor, op=ReduceOp.SUM, group=pg)
assert tensor.equal(tensor_to_check)
gpc.destroy()

View File

@ -6,7 +6,9 @@ import numpy as np
import torch
from packaging import version
from colossalai.device.device_mesh import DeviceMesh
from colossalai.lazy.lazy_init import LazyInitContext, LazyTensor, _MyTensor
from colossalai.tensor.d_tensor.layout import Layout
from colossalai.tensor.d_tensor.layout_converter import to_global
from tests.kit.model_zoo.registry import ModelAttribute
@ -81,7 +83,8 @@ def check_lazy_init(entry: TestingEntry, seed: int = 42, verbose: bool = False,
print(f'{model.__class__.__name__} pass')
def assert_dist_model_equal(model: torch.nn.Module, distributed_model: torch.nn.Module, layout_dict: dict) -> None:
def assert_dist_model_equal(model: torch.nn.Module, distributed_model: torch.nn.Module, device_mesh: DeviceMesh,
sharding_spec_dict: dict) -> None:
state = model.state_dict()
distributed_state = distributed_model.state_dict()
@ -91,6 +94,7 @@ def assert_dist_model_equal(model: torch.nn.Module, distributed_model: torch.nn.
assert n1 == n2
t1 = t1.cuda()
t2 = t2.cuda()
if n2 in layout_dict:
t2 = to_global(t2, layout_dict[n2])
if n2 in sharding_spec_dict:
layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_dict[n2], global_shape=t1.shape)
t2 = to_global(t2, layout)
assert torch.equal(t1, t2), f'{n1} {t1} vs {t2}'

View File

@ -26,23 +26,19 @@ def find_shard_dim(shape: torch.Size) -> Optional[int]:
return dim
def make_layout(device_mesh: DeviceMesh, original_tensor: torch.Tensor) -> Layout:
def make_sharding_spec(original_tensor: torch.Tensor) -> Layout:
shard_dim = find_shard_dim(original_tensor.shape)
dim_partition_dict = {shard_dim: [0]} if shard_dim is not None else {}
target_sharding_spec = ShardingSpec(dim_size=original_tensor.dim(), dim_partition_dict=dim_partition_dict)
layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=target_sharding_spec,
entire_shape=original_tensor.shape)
return layout
return target_sharding_spec
def _get_current_name(prefix: str, name: str) -> str:
return f'{prefix}.{name}'.lstrip('.')
def generate_layout_dict(model: nn.Module, device_mesh: DeviceMesh) -> dict:
layout_dict = {}
def generate_sharding_spec_dict(model: nn.Module) -> dict:
sharding_spec_dict = {}
@torch.no_grad()
def generate_recursively(module: nn.Module, prefix: str = ''):
@ -53,17 +49,17 @@ def generate_layout_dict(model: nn.Module, device_mesh: DeviceMesh) -> dict:
# initialize tensors directly attached to the current module
for name, param in module.named_parameters(recurse=False):
if isinstance(param, LazyTensor):
layout = make_layout(device_mesh, param)
layout_dict[_get_current_name(prefix, name)] = layout
sharding_spec = make_sharding_spec(param)
sharding_spec_dict[_get_current_name(prefix, name)] = sharding_spec
for name, buf in module.named_buffers(recurse=False):
if isinstance(buf, LazyTensor):
layout = make_layout(device_mesh, buf)
layout_dict[_get_current_name(prefix, name)] = layout
sharding_spec = make_sharding_spec(buf)
sharding_spec_dict[_get_current_name(prefix, name)] = sharding_spec
generate_recursively(model)
return layout_dict
return sharding_spec_dict
@parameterize('subset', ['torchvision', 'diffusers', 'timm', 'transformers', 'torchaudio', 'deepfm', 'dlrm'])
@ -85,9 +81,9 @@ def run_dist_lazy_init(subset, seed: int = 42):
ctx = LazyInitContext()
with ctx:
deferred_model = model_fn()
layout_dict = generate_layout_dict(deferred_model, device_mesh)
ctx.distribute(deferred_model, layout_dict, verbose=True)
assert_dist_model_equal(model, deferred_model, layout_dict)
sharding_spec_dict = generate_sharding_spec_dict(deferred_model)
ctx.distribute(deferred_model, device_mesh, sharding_spec_dict, verbose=True)
assert_dist_model_equal(model, deferred_model, device_mesh, sharding_spec_dict)
def run_dist(rank, world_size, port) -> None:

View File

@ -125,23 +125,6 @@ def check_all_reduce_bwd(process_groups_dict, rank):
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_in_flatten_device_mesh(process_groups_dict, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
# reduce through logical process axis 0 at flatten device mesh
# tensor to check
# tensor([[6., 6.],
# [6., 6.]])
tensor_to_check = torch.tensor([[6, 6], [6, 6]], dtype=tensor_to_comm.dtype).cuda()
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1])
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, process_groups_dict, logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_comm(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@ -153,24 +136,22 @@ def check_comm(rank, world_size, port):
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
process_groups_dict = device_mesh.process_groups_dict
process_group_dict = device_mesh._process_group_dict[rank]
# test all gather
check_all_gather(process_groups_dict, rank)
check_all_gather(process_group_dict, rank)
# test shard
check_shard(process_groups_dict, rank)
check_shard(process_group_dict, rank)
# test all to all
check_all_to_all(process_groups_dict, rank)
check_all_to_all(process_group_dict, rank)
# test all reduce
check_all_reduce_fwd(process_groups_dict, rank)
check_all_reduce_bwd(process_groups_dict, rank)
check_all_reduce_fwd(process_group_dict, rank)
check_all_reduce_bwd(process_group_dict, rank)
flatten_process_groups_dict = device_mesh.flatten_device_mesh.process_groups_dict
# test all reduce in 1D flatten device mesh
check_all_reduce_in_flatten_device_mesh(flatten_process_groups_dict, rank)
gpc.destroy()

View File

@ -31,13 +31,9 @@ def check_dtensor(rank, world_size, port):
device_mesh = DeviceMesh(torch.Tensor([0, 1, 2, 3]), (2, 2), init_process_group=True)
target_sharding_spec = ShardingSpec(dim_size=original_tensor.dim(), dim_partition_dict={0: [0]})
layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=target_sharding_spec,
entire_shape=original_tensor.shape)
d_tensor = DTensor(original_tensor, layout)
d_tensor = DTensor(original_tensor, device_mesh, target_sharding_spec)
assert d_tensor.entire_shape == original_tensor.shape
assert d_tensor.global_shape == original_tensor.shape
assert d_tensor.data_type == original_tensor.dtype
if rank in (0, 1):
@ -57,12 +53,7 @@ def check_dtensor(rank, world_size, port):
raise ValueError(f'rank {rank} is not in the device mesh')
new_sharding_spec = ShardingSpec(dim_size=original_tensor.dim(), dim_partition_dict={0: [0, 1]})
new_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=new_sharding_spec,
entire_shape=original_tensor.shape)
d_tensor.layout_convert(new_layout)
d_tensor.layout_convert(device_mesh, new_sharding_spec)
if rank == 0:
assert d_tensor.local_tensor.equal(original_tensor.narrow(0, 0, 1))
@ -75,7 +66,7 @@ def check_dtensor(rank, world_size, port):
else:
raise ValueError(f'rank {rank} is not in the device mesh')
dtensor_from_local = distribute_tensor(original_tensor, new_layout)
dtensor_from_local = distribute_tensor(original_tensor, device_mesh, new_sharding_spec)
if rank == 0:
assert dtensor_from_local.local_tensor.equal(original_tensor.narrow(0, 0, 1))

View File

@ -12,9 +12,9 @@ from colossalai.tensor.d_tensor.layout_converter import LayoutConverter
from colossalai.tensor.d_tensor.sharding_spec import DimSpec, ShardingSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
entire_shape = torch.Size((64, 32, 16))
global_shape = torch.Size((64, 32, 16))
layout_converter = LayoutConverter()
physical_mesh_id = torch.arange(0, 4).reshape(2, 2)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
@ -30,10 +30,7 @@ def check_one_step_transform(rank, world_size, port):
# shard_sequence: S0,S1,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec,
entire_shape=entire_shape)
layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec, global_shape=global_shape)
rst_dict = layout_converter.all_gather_transform_layouts(layout)
@ -49,10 +46,7 @@ def check_one_step_transform(rank, world_size, port):
# shard_sequence: S0,S1,R
# device_mesh_shape: (4, 4)
sharding_spec_all2all = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict_all2all)
layout_all2all = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_all2all,
entire_shape=entire_shape)
layout_all2all = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_all2all, global_shape=global_shape)
rst_dict_all2all = layout_converter.all_to_all_transform_layout(layout_all2all)
@ -71,10 +65,7 @@ def check_one_step_transform(rank, world_size, port):
# shard_sequence: S0,R,R
# device_mesh_shape: (4, 4)
sharding_spec_shard = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_shard)
shard_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_shard,
entire_shape=entire_shape)
shard_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_shard, global_shape=global_shape)
rst_dict_shard = layout_converter.shard_transform_layout(shard_layout)
@ -100,19 +91,13 @@ def check_layout_converting(rank, world_size, port):
# shard_sequence: R,S01,R
# device_mesh_shape: (4, 4)
sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source)
source_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_source,
entire_shape=entire_shape)
source_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_source, global_shape=global_shape)
# DistSpec:
# shard_sequence: S01,R,R
# device_mesh_shape: (4, 4)
sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target)
target_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_target,
entire_shape=entire_shape)
target_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_target, global_shape=global_shape)
transform_path, comm_action_sequence = layout_converter.layout_converting(source_layout, target_layout)
@ -159,21 +144,15 @@ def check_layout_converting_apply(rank, world_size, port):
# shard_sequence: R,S01,R
# device_mesh_shape: (4, 4)
sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source)
source_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_source,
entire_shape=entire_shape)
source_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_source, global_shape=global_shape)
# DistSpec:
# shard_sequence: S01,R,R
# device_mesh_shape: (4, 4)
sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target)
target_layout = Layout(device_mesh=device_mesh,
device_type=torch.device('cuda'),
sharding_spec=sharding_spec_target,
entire_shape=entire_shape)
target_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_target, global_shape=global_shape)
original_tensor = torch.rand(entire_shape).cuda()
original_tensor = torch.rand(global_shape).cuda()
# tensor_to_apply: [R, S01, R]
tensor_to_apply = original_tensor.narrow(1, rank * 8, 8)

View File

@ -1,9 +1,10 @@
from colossalai.tensor.shape_consistency import ShapeConsistencyManager, CollectiveCommPattern
import torch
from colossalai.tensor.sharding_spec import _DimSpec, ShardingSpec
from colossalai.device.device_mesh import DeviceMesh
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.shape_consistency import CollectiveCommPattern, ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
physical_mesh_id = torch.arange(0, 16)
mesh_shape = (4, 4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7],

View File

@ -26,7 +26,7 @@ def run_dist(rank, world_size, port):
# the mesh is in the following topo
# [[0, 1],
# [2, 3]]
physical_mesh_id = torch.arange(0, 4).reshape(2, 2)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
row_id = rank // 2

View File

@ -5,7 +5,7 @@ from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
def test_sharding_spec():
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
physical_mesh_id = torch.arange(0, 16)
mesh_shape = (4, 4)
# [[0, 1, 2, 3],
# [4, 5, 6, 7],