mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add runtime pass and numerical test for view handler (#2018)
parent
bb6245612d
commit
ea0f6b8df9
|
@ -37,6 +37,30 @@ def _solution_annotatation(gm: torch.fx.GraphModule, solution: List[int]):
|
||||||
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
|
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
|
||||||
str(node))
|
str(node))
|
||||||
|
|
||||||
|
# experimental pass for torch.Tensor.view
|
||||||
|
# Arguments of view op will be divided in the sharded dimensions.
|
||||||
|
for node in nodes:
|
||||||
|
if node.op == 'call_method' and getattr(node.args[0]._meta_data.__class__, node.target) in (torch.Tensor.view,):
|
||||||
|
output_dim_partition_dict = node.sharding_spec.dim_partition_dict
|
||||||
|
device_mesh = node.sharding_spec.device_mesh
|
||||||
|
new_args = []
|
||||||
|
for arg in node.args:
|
||||||
|
if isinstance(arg, Node):
|
||||||
|
if isinstance(arg._meta_data, int):
|
||||||
|
new_args.append(arg._meta_data)
|
||||||
|
else:
|
||||||
|
new_args.append(arg)
|
||||||
|
else:
|
||||||
|
assert isinstance(arg, int), 'The argument in view node should be either type of Node or int.'
|
||||||
|
new_args.append(arg)
|
||||||
|
|
||||||
|
for dim, shard_dims in output_dim_partition_dict.items():
|
||||||
|
total_shard_size = 1
|
||||||
|
for shard_dim in shard_dims:
|
||||||
|
total_shard_size *= device_mesh.shape[shard_dim]
|
||||||
|
new_args[dim + 1] //= total_shard_size
|
||||||
|
node.args = tuple(new_args)
|
||||||
|
|
||||||
# the dict to get input sharding specs of user node
|
# the dict to get input sharding specs of user node
|
||||||
sharding_spec_convert_dict = {}
|
sharding_spec_convert_dict = {}
|
||||||
# the dict to record comm actions of nodes
|
# the dict to record comm actions of nodes
|
||||||
|
|
|
@ -103,13 +103,18 @@ class ViewGenerator(FollowingStrategyGenerator):
|
||||||
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
||||||
if len(total_mesh_dim_list) == 1:
|
if len(total_mesh_dim_list) == 1:
|
||||||
total_mesh_dim_list = total_mesh_dim_list[0]
|
total_mesh_dim_list = total_mesh_dim_list[0]
|
||||||
|
# the total mesh dim list only has one element, so the shard dim has only one element as well.
|
||||||
|
shard_dim = list(dim_partition_dict_for_input.keys())[0]
|
||||||
input_comm_action = self.get_communication_action(
|
input_comm_action = self.get_communication_action(
|
||||||
sharding_spec=sharding_spec_mapping["input"],
|
sharding_spec=sharding_spec_mapping["input"],
|
||||||
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
||||||
logical_process_axis=total_mesh_dim_list,
|
logical_process_axis=total_mesh_dim_list,
|
||||||
comm_type=CommType.BEFORE,
|
comm_type=CommType.BEFORE,
|
||||||
arg_index=0)
|
arg_index=0)
|
||||||
input_comm_action.comm_spec.gather_dim = total_mesh_dim_list
|
# it will gather the input through gather_dim during forward phase.
|
||||||
|
input_comm_action.comm_spec.gather_dim = shard_dim
|
||||||
|
# it will split the input activation grad through shard_dim during backward phase.
|
||||||
|
input_comm_action.comm_spec.shard_dim = shard_dim
|
||||||
|
|
||||||
elif len(total_mesh_dim_list) >= 2:
|
elif len(total_mesh_dim_list) >= 2:
|
||||||
source_spec = sharding_spec_mapping["input"]
|
source_spec = sharding_spec_mapping["input"]
|
||||||
|
|
|
@ -105,6 +105,7 @@ def _convert_logical_sharding_to_physical_sharding_spec_for_linear(strategy: Sha
|
||||||
dim_mapping={0: i},
|
dim_mapping={0: i},
|
||||||
physical_shape=output_op_data.data.shape,
|
physical_shape=output_op_data.data.shape,
|
||||||
inplace=True)
|
inplace=True)
|
||||||
|
strategy_copy.name = f'{strategy.name}_{i}'
|
||||||
sharding_strategies.append(strategy_copy)
|
sharding_strategies.append(strategy_copy)
|
||||||
except ShardingNotDivisibleError as e:
|
except ShardingNotDivisibleError as e:
|
||||||
logger.debug(
|
logger.debug(
|
||||||
|
@ -194,7 +195,7 @@ class LinearModuleHandler(ModuleHandler):
|
||||||
@operator_registry.register(F.linear)
|
@operator_registry.register(F.linear)
|
||||||
class LinearFunctionHandler(NodeHandler):
|
class LinearFunctionHandler(NodeHandler):
|
||||||
"""
|
"""
|
||||||
A LinearModuleHandler which deals with the sharding strategies for nn.Linear module.
|
A LinearFunctionHandler which deals with the sharding strategies for F.Linear.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||||
|
|
|
@ -1,28 +1,81 @@
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import ViewHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import ViewHandler
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||||
|
from colossalai.initialize import launch
|
||||||
|
from colossalai.logging import disable_existing_loggers
|
||||||
|
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||||
|
|
||||||
|
|
||||||
class ViewModel(nn.Module):
|
class ConvViewModel(nn.Module):
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self, tgt_shape):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.tgt_shape = tgt_shape
|
||||||
|
|
||||||
def forward(self, input, other):
|
def forward(self, input, other):
|
||||||
conv_node = nn.functional.conv2d(input, other)
|
conv_node = nn.functional.conv2d(input, other, bias=None)
|
||||||
reshape_node = conv_node.view(32, 4, 32, 32, 4)
|
reshape_node = conv_node.view(*self.tgt_shape)
|
||||||
return reshape_node
|
return reshape_node
|
||||||
|
|
||||||
|
|
||||||
def test_view_handler():
|
class LinearViewModel(nn.Module):
|
||||||
model = ViewModel()
|
|
||||||
|
def __init__(self, tgt_shape):
|
||||||
|
super().__init__()
|
||||||
|
self.tgt_shape = tgt_shape
|
||||||
|
|
||||||
|
def forward(self, input, other):
|
||||||
|
linear_node = nn.functional.linear(input, other, bias=None)
|
||||||
|
reshape_node = linear_node.view(*self.tgt_shape)
|
||||||
|
return reshape_node
|
||||||
|
|
||||||
|
|
||||||
|
def check_view_handler(rank, tgt_shape, model_cls, world_size, port):
|
||||||
|
disable_existing_loggers()
|
||||||
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
model = model_cls(tgt_shape).cuda()
|
||||||
|
|
||||||
|
if model_cls.__name__ == 'ConvViewModel':
|
||||||
|
input = torch.rand(8, 8, 66, 66).to('cuda')
|
||||||
|
other = torch.rand(16, 8, 3, 3).to('cuda')
|
||||||
|
# index of conv node in computation graph
|
||||||
|
node_index = 2
|
||||||
|
# total number of conv strategies
|
||||||
|
strategy_number = 16
|
||||||
|
if model_cls.__name__ == 'LinearViewModel':
|
||||||
|
input = torch.rand(8, 16, 64, 32).to('cuda')
|
||||||
|
other = torch.rand(64, 32).to('cuda')
|
||||||
|
# index of linear node in computation graph
|
||||||
|
node_index = 2
|
||||||
|
# total number of linear strategies
|
||||||
|
strategy_number = 23
|
||||||
|
|
||||||
|
physical_mesh_id = torch.arange(0, 4)
|
||||||
|
mesh_shape = (2, 2)
|
||||||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||||
|
|
||||||
|
numerical_test_for_node_strategy(model=model,
|
||||||
|
device_mesh=device_mesh,
|
||||||
|
node_index=node_index,
|
||||||
|
strategy_number=strategy_number,
|
||||||
|
input_args=[input, other],
|
||||||
|
meta_arg_names=['input', 'other'],
|
||||||
|
node_type='following')
|
||||||
tracer = ColoTracer()
|
tracer = ColoTracer()
|
||||||
|
if model_cls.__name__ == 'ConvViewModel':
|
||||||
# graph():
|
# graph():
|
||||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||||
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||||
|
@ -31,25 +84,47 @@ def test_view_handler():
|
||||||
# return view
|
# return view
|
||||||
graph = tracer.trace(model,
|
graph = tracer.trace(model,
|
||||||
meta_args={
|
meta_args={
|
||||||
"input": torch.rand(8, 8, 66, 66).to('meta'),
|
"input": torch.rand(8, 16, 66, 66).to('meta'),
|
||||||
"other": torch.rand(16, 8, 3, 3).to('meta'),
|
"other": torch.rand(16, 8, 3, 3).to('meta'),
|
||||||
})
|
})
|
||||||
gm = ColoGraphModule(model, graph)
|
|
||||||
physical_mesh_id = torch.arange(0, 4)
|
|
||||||
|
|
||||||
mesh_shape = (2, 2)
|
if model_cls.__name__ == 'LinearViewModel':
|
||||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
# graph():
|
||||||
conv_mod_node = list(graph.nodes)[2]
|
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||||
|
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||||
|
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
|
||||||
|
# %view : [#users=1] = call_method[target=view](args = (%linear, 32, 4, 32, 32, 4), kwargs = {})
|
||||||
|
# return view
|
||||||
|
graph = tracer.trace(model,
|
||||||
|
meta_args={
|
||||||
|
"input": torch.rand(8, 16, 64, 32).to('meta'),
|
||||||
|
"other": torch.rand(64, 32).to('meta'),
|
||||||
|
})
|
||||||
|
|
||||||
|
gm = ColoGraphModule(model, graph)
|
||||||
|
|
||||||
|
previous_mod_node = list(graph.nodes)[2]
|
||||||
view_node = list(graph.nodes)[3]
|
view_node = list(graph.nodes)[3]
|
||||||
view_strategies_vector = StrategiesVector(view_node)
|
view_strategies_vector = StrategiesVector(view_node)
|
||||||
conv_strategies_vector = StrategiesVector(conv_mod_node)
|
previous_strategies_vector = StrategiesVector(previous_mod_node)
|
||||||
|
|
||||||
# build handler
|
# build handler
|
||||||
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
if model_cls.__name__ == 'ConvViewModel':
|
||||||
|
|
||||||
|
conv_handler = ConvFunctionHandler(node=previous_mod_node,
|
||||||
device_mesh=device_mesh,
|
device_mesh=device_mesh,
|
||||||
strategies_vector=conv_strategies_vector)
|
strategies_vector=previous_strategies_vector)
|
||||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
||||||
|
|
||||||
|
if model_cls.__name__ == 'LinearViewModel':
|
||||||
|
assert len(previous_strategies_vector) == 0
|
||||||
|
linear_handler = LinearFunctionHandler(node=previous_mod_node,
|
||||||
|
device_mesh=device_mesh,
|
||||||
|
strategies_vector=previous_strategies_vector)
|
||||||
|
linear_handler.register_strategy(compute_resharding_cost=False)
|
||||||
|
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
||||||
|
|
||||||
view_handler = ViewHandler(node=view_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector)
|
view_handler = ViewHandler(node=view_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector)
|
||||||
|
|
||||||
view_handler.register_strategy(compute_resharding_cost=False)
|
view_handler.register_strategy(compute_resharding_cost=False)
|
||||||
|
@ -62,7 +137,10 @@ def test_view_handler():
|
||||||
# make sure they have valid values
|
# make sure they have valid values
|
||||||
assert op_data.data is not None
|
assert op_data.data is not None
|
||||||
|
|
||||||
|
if model_cls.__name__ == 'ConvViewModel':
|
||||||
assert mapping['input'].name == "conv2d"
|
assert mapping['input'].name == "conv2d"
|
||||||
|
else:
|
||||||
|
assert mapping['input'].name == "linear"
|
||||||
assert mapping['input'].data.is_meta
|
assert mapping['input'].data.is_meta
|
||||||
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
|
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
|
||||||
assert mapping['input'].type == OperationDataType.ARG
|
assert mapping['input'].type == OperationDataType.ARG
|
||||||
|
@ -70,12 +148,16 @@ def test_view_handler():
|
||||||
|
|
||||||
assert mapping['output'].name == "view"
|
assert mapping['output'].name == "view"
|
||||||
assert mapping['output'].data.is_meta
|
assert mapping['output'].data.is_meta
|
||||||
assert mapping['output'].data.shape == torch.Size([32, 4, 32, 32, 4])
|
assert mapping['output'].data.shape == torch.Size(tgt_shape)
|
||||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||||
|
|
||||||
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
||||||
assert len(view_strategies_vector) == len(conv_strategies_vector)
|
assert len(view_strategies_vector) == len(previous_strategies_vector)
|
||||||
strategy_name_list = [strategy.name for strategy in view_strategies_vector]
|
strategy_name_list = [strategy.name for strategy in view_strategies_vector]
|
||||||
|
|
||||||
|
if model_cls.__name__ == 'ConvViewModel':
|
||||||
|
|
||||||
|
if tgt_shape == (32, 4, 64, 16, 4):
|
||||||
assert '[S0, S1, R, R] -> FULLY REPLICATED_0' in strategy_name_list
|
assert '[S0, S1, R, R] -> FULLY REPLICATED_0' in strategy_name_list
|
||||||
assert '[S1, S0, R, R] -> FULLY REPLICATED_1' in strategy_name_list
|
assert '[S1, S0, R, R] -> FULLY REPLICATED_1' in strategy_name_list
|
||||||
assert '[S0, R, R, R] -> [S0, R, R, R, R]_2' in strategy_name_list
|
assert '[S0, R, R, R] -> [S0, R, R, R, R]_2' in strategy_name_list
|
||||||
|
@ -93,6 +175,91 @@ def test_view_handler():
|
||||||
assert '[R, R, R, R] -> [R, R, R, R, R]_14' in strategy_name_list
|
assert '[R, R, R, R] -> [R, R, R, R, R]_14' in strategy_name_list
|
||||||
assert '[R, S01, R, R] -> FULLY REPLICATED_15' in strategy_name_list
|
assert '[R, S01, R, R] -> FULLY REPLICATED_15' in strategy_name_list
|
||||||
|
|
||||||
|
if tgt_shape == (8, 4, 4, 64, 16, 4):
|
||||||
|
assert '[S0, S1, R, R] -> [S0, S1, R, R, R, R]_0' in strategy_name_list
|
||||||
|
assert '[S1, S0, R, R] -> [S1, S0, R, R, R, R]_1' in strategy_name_list
|
||||||
|
assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_2' in strategy_name_list
|
||||||
|
assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_3' in strategy_name_list
|
||||||
|
assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_4' in strategy_name_list
|
||||||
|
assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_5' in strategy_name_list
|
||||||
|
assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_6' in strategy_name_list
|
||||||
|
assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_7' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_8' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_9' in strategy_name_list
|
||||||
|
assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_10' in strategy_name_list
|
||||||
|
assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_11' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_12' in strategy_name_list
|
||||||
|
assert '[S01, R, R, R] -> [S01, R, R, R, R, R]_13' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_14' in strategy_name_list
|
||||||
|
assert '[R, S01, R, R] -> [R, S01, R, R, R, R]_15' in strategy_name_list
|
||||||
|
|
||||||
|
if model_cls.__name__ == 'LinearViewModel':
|
||||||
|
|
||||||
|
if tgt_shape == (32, 4, 64, 16, 4):
|
||||||
|
assert '[S0, R, R, S1] -> [S0, R, R, S1, R]_0' in strategy_name_list
|
||||||
|
assert '[R, S0, R, S1] -> FULLY REPLICATED_1' in strategy_name_list
|
||||||
|
assert '[R, R, S0, S1] -> [R, R, S0, S1, R]_2' in strategy_name_list
|
||||||
|
assert '[S1, R, R, S0] -> [S1, R, R, S0, R]_3' in strategy_name_list
|
||||||
|
assert '[R, S1, R, S0] -> FULLY REPLICATED_4' in strategy_name_list
|
||||||
|
assert '[R, R, S1, S0] -> [R, R, S1, S0, R]_5' in strategy_name_list
|
||||||
|
assert '[S0, R, R, R] -> [S0, R, R, R, R]_6' in strategy_name_list
|
||||||
|
assert '[R, S0, R, R] -> FULLY REPLICATED_7' in strategy_name_list
|
||||||
|
assert '[R, R, S0, R] -> [R, R, S0, R, R]_8' in strategy_name_list
|
||||||
|
assert '[S1, R, R, R] -> [S1, R, R, R, R]_9' in strategy_name_list
|
||||||
|
assert '[R, S1, R, R] -> FULLY REPLICATED_10' in strategy_name_list
|
||||||
|
assert '[R, R, S1, R] -> [R, R, S1, R, R]_11' in strategy_name_list
|
||||||
|
assert '[R, R, R, S1] -> [R, R, R, S1, R]_12' in strategy_name_list
|
||||||
|
assert '[R, R, R, S0] -> [R, R, R, S0, R]_13' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R]_14' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R]_15' in strategy_name_list
|
||||||
|
assert '[R, R, R, S0] -> [R, R, R, S0, R]_16' in strategy_name_list
|
||||||
|
assert '[R, R, R, S1] -> [R, R, R, S1, R]_17' in strategy_name_list
|
||||||
|
assert '[S01, R, R, R] -> [S01, R, R, R, R]_18' in strategy_name_list
|
||||||
|
assert '[R, S01, R, R] -> FULLY REPLICATED_19' in strategy_name_list
|
||||||
|
assert '[R, R, S01, R] -> [R, R, S01, R, R]_20' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R]_21' in strategy_name_list
|
||||||
|
assert '[R, R, R, S01] -> [R, R, R, S01, R]_22' in strategy_name_list
|
||||||
|
|
||||||
|
if tgt_shape == (8, 4, 4, 64, 16, 4):
|
||||||
|
assert '[S0, R, R, S1] -> [S0, R, R, R, S1, R]_0' in strategy_name_list
|
||||||
|
assert '[R, S0, R, S1] -> [R, S0, R, R, S1, R]_1' in strategy_name_list
|
||||||
|
assert '[R, R, S0, S1] -> [R, R, R, S0, S1, R]_2' in strategy_name_list
|
||||||
|
assert '[S1, R, R, S0] -> [S1, R, R, R, S0, R]_3' in strategy_name_list
|
||||||
|
assert '[R, S1, R, S0] -> [R, S1, R, R, S0, R]_4' in strategy_name_list
|
||||||
|
assert '[R, R, S1, S0] -> [R, R, R, S1, S0, R]_5' in strategy_name_list
|
||||||
|
assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_6' in strategy_name_list
|
||||||
|
assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_7' in strategy_name_list
|
||||||
|
assert '[R, R, S0, R] -> [R, R, R, S0, R, R]_8' in strategy_name_list
|
||||||
|
assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_9' in strategy_name_list
|
||||||
|
assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_10' in strategy_name_list
|
||||||
|
assert '[R, R, S1, R] -> [R, R, R, S1, R, R]_11' in strategy_name_list
|
||||||
|
assert '[R, R, R, S1] -> [R, R, R, R, S1, R]_12' in strategy_name_list
|
||||||
|
assert '[R, R, R, S0] -> [R, R, R, R, S0, R]_13' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_14' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_15' in strategy_name_list
|
||||||
|
assert '[R, R, R, S0] -> [R, R, R, R, S0, R]_16' in strategy_name_list
|
||||||
|
assert '[R, R, R, S1] -> [R, R, R, R, S1, R]_17' in strategy_name_list
|
||||||
|
assert '[S01, R, R, R] -> [S01, R, R, R, R, R]_18' in strategy_name_list
|
||||||
|
assert '[R, S01, R, R] -> [R, S01, R, R, R, R]_19' in strategy_name_list
|
||||||
|
assert '[R, R, S01, R] -> [R, R, R, S01, R, R]_20' in strategy_name_list
|
||||||
|
assert '[R, R, R, R] -> [R, R, R, R, R, R]_21' in strategy_name_list
|
||||||
|
assert '[R, R, R, S01] -> [R, R, R, R, S01, R]_22' in strategy_name_list
|
||||||
|
|
||||||
|
|
||||||
|
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||||
|
@pytest.mark.dist
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
@parameterize('tgt_shape', [(32, 4, 64, 16, 4), (8, 4, 4, 64, 16, 4)])
|
||||||
|
@parameterize('model_cls', [ConvViewModel, LinearViewModel])
|
||||||
|
def test_view_handler(tgt_shape, model_cls):
|
||||||
|
world_size = 4
|
||||||
|
run_func = partial(check_view_handler,
|
||||||
|
tgt_shape=tgt_shape,
|
||||||
|
model_cls=model_cls,
|
||||||
|
world_size=world_size,
|
||||||
|
port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_view_handler()
|
test_view_handler()
|
||||||
|
|
|
@ -87,6 +87,11 @@ def numerical_test_for_node_strategy(model: torch.nn.Module,
|
||||||
solution_len = len(strategies_constructor.leaf_strategies)
|
solution_len = len(strategies_constructor.leaf_strategies)
|
||||||
solution = [0] * solution_len
|
solution = [0] * solution_len
|
||||||
solution[node_index] = strategy_index
|
solution[node_index] = strategy_index
|
||||||
|
elif node_type == 'following':
|
||||||
|
solution_len = len(strategies_constructor.leaf_strategies)
|
||||||
|
solution = [0] * solution_len
|
||||||
|
solution[node_index] = strategy_index
|
||||||
|
solution[node_index + 1] = strategy_index
|
||||||
else:
|
else:
|
||||||
node_vector = strategies_constructor.leaf_strategies[node_index]
|
node_vector = strategies_constructor.leaf_strategies[node_index]
|
||||||
strategy_to_keep = node_vector[strategy_index]
|
strategy_to_keep = node_vector[strategy_index]
|
||||||
|
@ -121,7 +126,6 @@ def numerical_test_for_node_strategy(model: torch.nn.Module,
|
||||||
grad_to_shard = grad_to_shard_dict[key]
|
grad_to_shard = grad_to_shard_dict[key]
|
||||||
grad_to_compare = grad_to_compare_dict[key]
|
grad_to_compare = grad_to_compare_dict[key]
|
||||||
assert_close_helper(grad_to_shard, grad_to_compare, strategy_index=strategy_index, type='input grad')
|
assert_close_helper(grad_to_shard, grad_to_compare, strategy_index=strategy_index, type='input grad')
|
||||||
|
|
||||||
# extract the strategy used in this iter
|
# extract the strategy used in this iter
|
||||||
strategy_in_use = target_node.strategies_vector[strategy_index]
|
strategy_in_use = target_node.strategies_vector[strategy_index]
|
||||||
param_to_shard_dict = dict(gm.named_parameters())
|
param_to_shard_dict = dict(gm.named_parameters())
|
||||||
|
|
Loading…
Reference in New Issue