|
|
|
@ -896,23 +896,22 @@ class IndexTracer(object):
|
|
|
|
|
|
|
|
|
|
def _find_inherit_dim(self, input_node, input_dim, node):
|
|
|
|
|
input_node_idx = _find_idx_by_name(input_node.name, self.nodes_list)
|
|
|
|
|
node_idx = _find_idx_by_name(node.name, self.nodes_list)
|
|
|
|
|
node_trace_source = self._find_source_trace_from_node(node)
|
|
|
|
|
for node_dim in range(len(_get_node_shape(node))):
|
|
|
|
|
if (
|
|
|
|
|
input_node_idx in node_trace_source[node_dim]
|
|
|
|
|
and node_trace_source[node_dim][input_node_idx] == input_dim
|
|
|
|
|
):
|
|
|
|
|
return {node_idx: node_dim}
|
|
|
|
|
return {}
|
|
|
|
|
return node_dim
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
def check_index_duplicate(self, chunk_infos):
|
|
|
|
|
input_dim_after_node = {}
|
|
|
|
|
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
|
|
|
|
|
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
|
|
|
|
|
input_dim_after_node.update(
|
|
|
|
|
self._find_inherit_dim(input_node, v, self.nodes_list[k])
|
|
|
|
|
)
|
|
|
|
|
inherit_dim = self._find_inherit_dim(input_node, v, self.nodes_list[k])
|
|
|
|
|
if inherit_dim:
|
|
|
|
|
input_dim_after_node[k] = inherit_dim
|
|
|
|
|
|
|
|
|
|
for node in self.nodes_list[
|
|
|
|
|
chunk_infos["region"][0] : chunk_infos["region"][1] + 1
|
|
|
|
@ -934,8 +933,8 @@ class IndexTracer(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MemoryEstimator(object):
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
|
pass
|
|
|
|
|
def __init__(self, index_tracer: IndexTracer) -> None:
|
|
|
|
|
self.index_tracer = index_tracer
|
|
|
|
|
|
|
|
|
|
def _get_meta_node_size(self, x):
|
|
|
|
|
x = x.meta["tensor_meta"]
|
|
|
|
@ -950,6 +949,8 @@ class MemoryEstimator(object):
|
|
|
|
|
}
|
|
|
|
|
out_size = activation_size(fwd_out)
|
|
|
|
|
out_node = [n.name] if out_size > 0 else []
|
|
|
|
|
# if any(i in n.name for i in ['transpose', 'permute', 'view']):
|
|
|
|
|
# out_size = 0
|
|
|
|
|
return out_size, out_node
|
|
|
|
|
|
|
|
|
|
def _get_output_node_size(self, n):
|
|
|
|
@ -961,11 +962,19 @@ class MemoryEstimator(object):
|
|
|
|
|
if i not in active_list:
|
|
|
|
|
active_list.append(i)
|
|
|
|
|
|
|
|
|
|
def _get_delete_node(self, user, user_to_last_uses):
|
|
|
|
|
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
|
|
|
|
|
delete_size = 0
|
|
|
|
|
delete_node = []
|
|
|
|
|
if user.op not in ("placeholder", "output"):
|
|
|
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
|
|
|
if to_keep is not None:
|
|
|
|
|
keep_list = []
|
|
|
|
|
for n in nodes_to_delete:
|
|
|
|
|
if n.name in to_keep:
|
|
|
|
|
keep_list.append(n)
|
|
|
|
|
for n in keep_list:
|
|
|
|
|
if n in nodes_to_delete:
|
|
|
|
|
nodes_to_delete.remove(n)
|
|
|
|
|
if len(nodes_to_delete):
|
|
|
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
|
|
|
delete_size = sum([i[0] for i in out_node])
|
|
|
|
@ -974,15 +983,30 @@ class MemoryEstimator(object):
|
|
|
|
|
delete_node.append(out_node[i][1][0])
|
|
|
|
|
elif nodes_to_delete[i].op == "placeholder":
|
|
|
|
|
delete_node.append(nodes_to_delete[i].name)
|
|
|
|
|
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
|
|
|
|
|
# delete_node.append(nodes_to_delete[i].name)
|
|
|
|
|
return delete_size, delete_node
|
|
|
|
|
|
|
|
|
|
def _get_delete_node_size(self, user, user_to_last_uses):
|
|
|
|
|
return self._get_delete_node(user, user_to_last_uses)[0]
|
|
|
|
|
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
|
|
|
|
|
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
|
|
|
|
|
|
|
|
|
|
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
|
|
|
|
|
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
|
|
|
|
|
for i in delete_node:
|
|
|
|
|
active_list.remove(i)
|
|
|
|
|
if i in active_list:
|
|
|
|
|
active_list.remove(i)
|
|
|
|
|
|
|
|
|
|
def _get_chunk_inputs_size(self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx):
|
|
|
|
|
nodes_to_delete = []
|
|
|
|
|
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
|
|
|
|
|
chunk_input_users = chunk_input.users.keys()
|
|
|
|
|
chunk_input_users_idx = [_find_idx_by_name(i.name, node_list) for i in chunk_input_users]
|
|
|
|
|
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
|
|
|
|
|
if chunk_input not in nodes_to_delete:
|
|
|
|
|
nodes_to_delete.append(chunk_input)
|
|
|
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
|
|
|
delete_size = sum([i[0] for i in out_node])
|
|
|
|
|
return delete_size
|
|
|
|
|
|
|
|
|
|
def _get_last_usr(self, nodes):
|
|
|
|
|
node_to_last_use: Dict[Node, Node] = {}
|
|
|
|
@ -1000,7 +1024,8 @@ class MemoryEstimator(object):
|
|
|
|
|
|
|
|
|
|
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
|
|
|
|
|
mem = 0
|
|
|
|
|
not_contiguous_ops = ["transpose", "permute"]
|
|
|
|
|
not_contiguous_ops = ["permute"]
|
|
|
|
|
inherit_contiguous_ops = ["transpose", "view"]
|
|
|
|
|
|
|
|
|
|
if node.op == "call_function" and any(
|
|
|
|
|
n in node.name for n in ["matmul", "reshape"]
|
|
|
|
@ -1020,30 +1045,36 @@ class MemoryEstimator(object):
|
|
|
|
|
):
|
|
|
|
|
if node not in not_contiguous_list:
|
|
|
|
|
not_contiguous_list.append(node)
|
|
|
|
|
elif any(i in node.args for i in not_contiguous_list):
|
|
|
|
|
if node not in not_contiguous_list:
|
|
|
|
|
not_contiguous_list.append(node)
|
|
|
|
|
|
|
|
|
|
return mem
|
|
|
|
|
|
|
|
|
|
def _get_chunk_ratio(self, node, chunk_dim, chunk_size):
|
|
|
|
|
sorted_dim = sorted(chunk_dim, key=lambda x: list(x.keys())[0])
|
|
|
|
|
dim = list(sorted_dim[-1].values())[0]
|
|
|
|
|
shape = node.meta["tensor_meta"].shape
|
|
|
|
|
chunk_ratio = float(chunk_size) / shape[dim]
|
|
|
|
|
return chunk_ratio
|
|
|
|
|
def _get_chunk_ratio(self, node, chunk_inputs, chunk_inputs_dim, chunk_size):
|
|
|
|
|
node_shape = _get_node_shape(node)
|
|
|
|
|
node_source = self.index_tracer._find_source_trace_from_node(node)
|
|
|
|
|
for (input_node, input_node_dim) in zip(chunk_inputs, chunk_inputs_dim):
|
|
|
|
|
for k, v in input_node_dim.items():
|
|
|
|
|
inherit_dim = self.index_tracer._find_inherit_dim(input_node, v, self.index_tracer.nodes_list[k])
|
|
|
|
|
if k == _find_idx_by_name(node.name, self.index_tracer.nodes_list):
|
|
|
|
|
chunk_ratio = float(chunk_size) / node_shape[inherit_dim]
|
|
|
|
|
return chunk_ratio
|
|
|
|
|
for dim, source in enumerate(node_source):
|
|
|
|
|
if k in source and source[k] == inherit_dim:
|
|
|
|
|
chunk_ratio = float(chunk_size) / node_shape[dim]
|
|
|
|
|
return chunk_ratio
|
|
|
|
|
return 1.
|
|
|
|
|
|
|
|
|
|
def _get_chunk_delete_node_size(
|
|
|
|
|
self, user, user_to_last_uses, chunk_ratio, node_list, start_node, end_node
|
|
|
|
|
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
|
|
|
|
|
):
|
|
|
|
|
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
|
|
|
|
|
# return 0
|
|
|
|
|
if user.op in ("placeholder", "output"):
|
|
|
|
|
return 0
|
|
|
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
|
|
|
delete_size = 0
|
|
|
|
|
for n in nodes_to_delete:
|
|
|
|
|
node_idx = _find_idx_by_name(n.name, node_list)
|
|
|
|
|
if start_node <= node_idx < end_node:
|
|
|
|
|
delete_size += self._get_output_node_size(n) * chunk_ratio
|
|
|
|
|
if n.name in chunk_inputs_names:
|
|
|
|
|
continue
|
|
|
|
|
delete_size += self._get_output_node_size(n) * chunk_ratio
|
|
|
|
|
return delete_size
|
|
|
|
|
|
|
|
|
|
def _print_mem_log(self, log, nodes, title=None):
|
|
|
|
@ -1071,10 +1102,7 @@ class MemoryEstimator(object):
|
|
|
|
|
def estimate_chunk_inference_mem(
|
|
|
|
|
self,
|
|
|
|
|
gm: torch.fx.GraphModule,
|
|
|
|
|
start_nodes=None,
|
|
|
|
|
end_nodes=None,
|
|
|
|
|
chunk_dims=None,
|
|
|
|
|
chunk_sizes=None,
|
|
|
|
|
chunk_infos=None,
|
|
|
|
|
):
|
|
|
|
|
act_memory = 0.0
|
|
|
|
|
act_memory_peak_log = []
|
|
|
|
@ -1087,36 +1115,53 @@ class MemoryEstimator(object):
|
|
|
|
|
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
|
|
|
|
|
_delete_free_var_from_last_use(user_to_last_uses_no_free_var)
|
|
|
|
|
|
|
|
|
|
use_chunk = all(
|
|
|
|
|
i is not None for i in [start_nodes, end_nodes, chunk_dims, chunk_sizes]
|
|
|
|
|
)
|
|
|
|
|
use_chunk = True if chunk_infos is not None else False
|
|
|
|
|
chunk_within = False
|
|
|
|
|
chunk_region_idx = None
|
|
|
|
|
chunk_ratio = 1 # use it to estimate chunk mem
|
|
|
|
|
chunk_size = 1
|
|
|
|
|
chunk_inputs_names = []
|
|
|
|
|
|
|
|
|
|
if use_chunk:
|
|
|
|
|
chunk_regions = [i["region"] for i in chunk_infos]
|
|
|
|
|
chunk_starts = [i[0] for i in chunk_regions]
|
|
|
|
|
chunk_ends = [i[1] for i in chunk_regions]
|
|
|
|
|
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
|
|
|
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
|
|
|
|
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos]
|
|
|
|
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
|
|
|
|
j.name for i in chunk_inputs_non_chunk for j in i
|
|
|
|
|
]
|
|
|
|
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
|
|
|
|
|
|
|
|
|
for idx, node in enumerate(node_list):
|
|
|
|
|
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
|
|
|
|
|
if use_chunk and idx in start_nodes:
|
|
|
|
|
if use_chunk and idx in chunk_starts:
|
|
|
|
|
chunk_within = True
|
|
|
|
|
chunk_region_idx = start_nodes.index(idx)
|
|
|
|
|
chunk_region_idx = chunk_starts.index(idx)
|
|
|
|
|
act_memory += self._get_output_node_size(chunk_outputs[chunk_region_idx]) / (1024**2)
|
|
|
|
|
|
|
|
|
|
# determine chunk ratio for current node
|
|
|
|
|
if chunk_within:
|
|
|
|
|
chunk_ratio = self._get_chunk_ratio(
|
|
|
|
|
node, chunk_dims[chunk_region_idx], chunk_sizes[chunk_region_idx]
|
|
|
|
|
node, chunk_inputs[chunk_region_idx], chunk_inputs_dim[chunk_region_idx], chunk_size
|
|
|
|
|
)
|
|
|
|
|
act_memory += self._get_output_node_size(
|
|
|
|
|
node_list[end_nodes[chunk_region_idx]]
|
|
|
|
|
) / (1024**2)
|
|
|
|
|
|
|
|
|
|
# if node is placeholder, just add the size of the node
|
|
|
|
|
if node.op == "placeholder":
|
|
|
|
|
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
|
|
|
|
|
act_memory_peak_log.append(act_memory)
|
|
|
|
|
active_node_list.append(node.name)
|
|
|
|
|
# skip output
|
|
|
|
|
elif node.op == "output":
|
|
|
|
|
continue
|
|
|
|
|
# node is an operation, calculate tmp, output node and delete node memory
|
|
|
|
|
# no change for non compute node
|
|
|
|
|
elif _is_non_compute_node_except_placeholder(node):
|
|
|
|
|
act_memory_peak_log.append(act_memory)
|
|
|
|
|
# node is a compute op
|
|
|
|
|
# calculate tmp, output node and delete node memory
|
|
|
|
|
else:
|
|
|
|
|
# forward memory
|
|
|
|
|
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
|
|
|
|
|
act_memory += (
|
|
|
|
|
self._get_contiguous_memory(node, not_contiguous_list)
|
|
|
|
|
* chunk_ratio
|
|
|
|
@ -1133,29 +1178,35 @@ class MemoryEstimator(object):
|
|
|
|
|
* chunk_ratio
|
|
|
|
|
/ (1024**2)
|
|
|
|
|
)
|
|
|
|
|
# delete unused vars not in chunk_input_list
|
|
|
|
|
# we can't delete input nodes until chunk ends
|
|
|
|
|
if chunk_within:
|
|
|
|
|
act_memory -= self._get_chunk_delete_node_size(
|
|
|
|
|
node,
|
|
|
|
|
user_to_last_uses_no_free_var,
|
|
|
|
|
chunk_ratio,
|
|
|
|
|
node_list,
|
|
|
|
|
start_nodes[chunk_region_idx],
|
|
|
|
|
end_nodes[chunk_region_idx],
|
|
|
|
|
chunk_inputs_names
|
|
|
|
|
) / (1024**2)
|
|
|
|
|
else:
|
|
|
|
|
act_memory -= self._get_delete_node_size(
|
|
|
|
|
node, user_to_last_uses_no_free_var
|
|
|
|
|
) / (1024**2)
|
|
|
|
|
act_memory -= (self._get_delete_node_size(
|
|
|
|
|
node, user_to_last_uses_no_free_var, chunk_inputs_names
|
|
|
|
|
) / (1024**2))
|
|
|
|
|
|
|
|
|
|
# log active node
|
|
|
|
|
# log active node, only effective without chunk
|
|
|
|
|
self._add_active_node(node, active_node_list)
|
|
|
|
|
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
|
|
|
|
|
|
|
|
|
|
# if node in chunk end nodes, restore chunk settings
|
|
|
|
|
if use_chunk and idx in end_nodes:
|
|
|
|
|
if use_chunk and idx in chunk_ends:
|
|
|
|
|
act_memory -= (
|
|
|
|
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
|
|
|
|
)
|
|
|
|
|
act_memory -= self._get_chunk_inputs_size(
|
|
|
|
|
chunk_inputs[chunk_region_idx],
|
|
|
|
|
chunk_inputs_non_chunk[chunk_region_idx],
|
|
|
|
|
node_list,
|
|
|
|
|
chunk_regions[chunk_region_idx][1]
|
|
|
|
|
) / (1024**2)
|
|
|
|
|
chunk_within = False
|
|
|
|
|
chunk_ratio = 1
|
|
|
|
|
chunk_region_idx = None
|
|
|
|
@ -1178,11 +1229,11 @@ class ChunkRegionSearch(object):
|
|
|
|
|
def __init__(self, gm) -> None:
|
|
|
|
|
self.gm = gm
|
|
|
|
|
self.node_list = list(gm.graph.nodes)
|
|
|
|
|
self.memory_estimator = MemoryEstimator()
|
|
|
|
|
self.index_tracer = IndexTracer(gm)
|
|
|
|
|
self.index_tracer.trace_index()
|
|
|
|
|
self.flow_tracer = FlowTracer(gm)
|
|
|
|
|
self.flow_tracer.trace_flow()
|
|
|
|
|
self.memory_estimator = MemoryEstimator(self.index_tracer)
|
|
|
|
|
|
|
|
|
|
def _find_peak_node(self, mem_peak):
|
|
|
|
|
max_value = max(mem_peak)
|
|
|
|
@ -1210,7 +1261,7 @@ class ChunkRegionSearch(object):
|
|
|
|
|
min_var = self._get_min_free_var(active_node, free_vars)
|
|
|
|
|
|
|
|
|
|
# from peak_node to free_var
|
|
|
|
|
chunk_region_start = None
|
|
|
|
|
chunk_region_start = len(free_vars)
|
|
|
|
|
for i in range(peak_node, -1, -1):
|
|
|
|
|
if len(active_node[i]) == min_var:
|
|
|
|
|
chunk_region_start = i + 1
|
|
|
|
@ -1218,7 +1269,7 @@ class ChunkRegionSearch(object):
|
|
|
|
|
if i in free_vars or i == 0:
|
|
|
|
|
raise RuntimeError()
|
|
|
|
|
# from peak_node to len-2
|
|
|
|
|
chunk_region_end = None
|
|
|
|
|
chunk_region_end = len(active_node) - 1
|
|
|
|
|
for i in range(peak_node, len(active_node)):
|
|
|
|
|
if len(active_node[i]) == min_var:
|
|
|
|
|
chunk_region_end = i
|
|
|
|
@ -1352,7 +1403,7 @@ class ChunkRegionSearch(object):
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
def search_region(self):
|
|
|
|
|
chunk_regions = []
|
|
|
|
|
chunk_infos = []
|
|
|
|
|
(
|
|
|
|
|
init_mem_peak,
|
|
|
|
|
_,
|
|
|
|
@ -1361,25 +1412,19 @@ class ChunkRegionSearch(object):
|
|
|
|
|
mem_peak = init_mem_peak
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
chunk_region = self._step_search(mem_peak, active_node, chunk_regions)
|
|
|
|
|
if chunk_region is None:
|
|
|
|
|
chunk_info = self._step_search(mem_peak, active_node, chunk_infos)
|
|
|
|
|
if chunk_info is None:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
chunk_regions.append(chunk_region)
|
|
|
|
|
chunk_infos.append(chunk_info)
|
|
|
|
|
(
|
|
|
|
|
mem_peak,
|
|
|
|
|
_,
|
|
|
|
|
active_node,
|
|
|
|
|
) = self.memory_estimator.estimate_chunk_inference_mem(
|
|
|
|
|
self.gm,
|
|
|
|
|
[i["region"][0] for i in chunk_regions],
|
|
|
|
|
[i["region"][1] for i in chunk_regions],
|
|
|
|
|
[i["inputs_dim"] for i in chunk_regions],
|
|
|
|
|
[1] * len(chunk_regions),
|
|
|
|
|
)
|
|
|
|
|
) = self.memory_estimator.estimate_chunk_inference_mem(self.gm, chunk_infos)
|
|
|
|
|
if self._stop_search(init_mem_peak, mem_peak):
|
|
|
|
|
break
|
|
|
|
|
return chunk_regions
|
|
|
|
|
return chunk_infos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
|
|
|
|
@ -1415,7 +1460,7 @@ def _gen_loop_end(
|
|
|
|
|
chunk_slice = _gen_chunk_slice_dim(
|
|
|
|
|
chunk_outputs_dim, "chunk_idx", chunk_output_shape
|
|
|
|
|
)
|
|
|
|
|
context = " chunk_result%s = %s\n" % (chunk_slice, chunk_outputs_name)
|
|
|
|
|
context = " chunk_result%s = %s; %s = None\n" % (chunk_slice, chunk_outputs_name, chunk_outputs_name)
|
|
|
|
|
context += (
|
|
|
|
|
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
|
|
|
|
|
)
|
|
|
|
|