update memory estimate

pull/2364/head
oahzxl 2 years ago
parent de65e6c3e8
commit e83e3c6154

@ -896,23 +896,22 @@ class IndexTracer(object):
def _find_inherit_dim(self, input_node, input_dim, node):
input_node_idx = _find_idx_by_name(input_node.name, self.nodes_list)
node_idx = _find_idx_by_name(node.name, self.nodes_list)
node_trace_source = self._find_source_trace_from_node(node)
for node_dim in range(len(_get_node_shape(node))):
if (
input_node_idx in node_trace_source[node_dim]
and node_trace_source[node_dim][input_node_idx] == input_dim
):
return {node_idx: node_dim}
return {}
return node_dim
return None
def check_index_duplicate(self, chunk_infos):
input_dim_after_node = {}
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
input_dim_after_node.update(
self._find_inherit_dim(input_node, v, self.nodes_list[k])
)
inherit_dim = self._find_inherit_dim(input_node, v, self.nodes_list[k])
if inherit_dim:
input_dim_after_node[k] = inherit_dim
for node in self.nodes_list[
chunk_infos["region"][0] : chunk_infos["region"][1] + 1
@ -934,8 +933,8 @@ class IndexTracer(object):
class MemoryEstimator(object):
def __init__(self) -> None:
pass
def __init__(self, index_tracer: IndexTracer) -> None:
self.index_tracer = index_tracer
def _get_meta_node_size(self, x):
x = x.meta["tensor_meta"]
@ -950,6 +949,8 @@ class MemoryEstimator(object):
}
out_size = activation_size(fwd_out)
out_node = [n.name] if out_size > 0 else []
# if any(i in n.name for i in ['transpose', 'permute', 'view']):
# out_size = 0
return out_size, out_node
def _get_output_node_size(self, n):
@ -961,11 +962,19 @@ class MemoryEstimator(object):
if i not in active_list:
active_list.append(i)
def _get_delete_node(self, user, user_to_last_uses):
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
delete_size = 0
delete_node = []
if user.op not in ("placeholder", "output"):
nodes_to_delete = user_to_last_uses.get(user, [])
if to_keep is not None:
keep_list = []
for n in nodes_to_delete:
if n.name in to_keep:
keep_list.append(n)
for n in keep_list:
if n in nodes_to_delete:
nodes_to_delete.remove(n)
if len(nodes_to_delete):
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
@ -974,15 +983,30 @@ class MemoryEstimator(object):
delete_node.append(out_node[i][1][0])
elif nodes_to_delete[i].op == "placeholder":
delete_node.append(nodes_to_delete[i].name)
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
# delete_node.append(nodes_to_delete[i].name)
return delete_size, delete_node
def _get_delete_node_size(self, user, user_to_last_uses):
return self._get_delete_node(user, user_to_last_uses)[0]
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
for i in delete_node:
active_list.remove(i)
if i in active_list:
active_list.remove(i)
def _get_chunk_inputs_size(self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx):
nodes_to_delete = []
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
chunk_input_users = chunk_input.users.keys()
chunk_input_users_idx = [_find_idx_by_name(i.name, node_list) for i in chunk_input_users]
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
if chunk_input not in nodes_to_delete:
nodes_to_delete.append(chunk_input)
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
return delete_size
def _get_last_usr(self, nodes):
node_to_last_use: Dict[Node, Node] = {}
@ -1000,7 +1024,8 @@ class MemoryEstimator(object):
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
mem = 0
not_contiguous_ops = ["transpose", "permute"]
not_contiguous_ops = ["permute"]
inherit_contiguous_ops = ["transpose", "view"]
if node.op == "call_function" and any(
n in node.name for n in ["matmul", "reshape"]
@ -1020,30 +1045,36 @@ class MemoryEstimator(object):
):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
elif any(i in node.args for i in not_contiguous_list):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
return mem
def _get_chunk_ratio(self, node, chunk_dim, chunk_size):
sorted_dim = sorted(chunk_dim, key=lambda x: list(x.keys())[0])
dim = list(sorted_dim[-1].values())[0]
shape = node.meta["tensor_meta"].shape
chunk_ratio = float(chunk_size) / shape[dim]
return chunk_ratio
def _get_chunk_ratio(self, node, chunk_inputs, chunk_inputs_dim, chunk_size):
node_shape = _get_node_shape(node)
node_source = self.index_tracer._find_source_trace_from_node(node)
for (input_node, input_node_dim) in zip(chunk_inputs, chunk_inputs_dim):
for k, v in input_node_dim.items():
inherit_dim = self.index_tracer._find_inherit_dim(input_node, v, self.index_tracer.nodes_list[k])
if k == _find_idx_by_name(node.name, self.index_tracer.nodes_list):
chunk_ratio = float(chunk_size) / node_shape[inherit_dim]
return chunk_ratio
for dim, source in enumerate(node_source):
if k in source and source[k] == inherit_dim:
chunk_ratio = float(chunk_size) / node_shape[dim]
return chunk_ratio
return 1.
def _get_chunk_delete_node_size(
self, user, user_to_last_uses, chunk_ratio, node_list, start_node, end_node
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
):
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
# return 0
if user.op in ("placeholder", "output"):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
node_idx = _find_idx_by_name(n.name, node_list)
if start_node <= node_idx < end_node:
delete_size += self._get_output_node_size(n) * chunk_ratio
if n.name in chunk_inputs_names:
continue
delete_size += self._get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(self, log, nodes, title=None):
@ -1071,10 +1102,7 @@ class MemoryEstimator(object):
def estimate_chunk_inference_mem(
self,
gm: torch.fx.GraphModule,
start_nodes=None,
end_nodes=None,
chunk_dims=None,
chunk_sizes=None,
chunk_infos=None,
):
act_memory = 0.0
act_memory_peak_log = []
@ -1087,36 +1115,53 @@ class MemoryEstimator(object):
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
_delete_free_var_from_last_use(user_to_last_uses_no_free_var)
use_chunk = all(
i is not None for i in [start_nodes, end_nodes, chunk_dims, chunk_sizes]
)
use_chunk = True if chunk_infos is not None else False
chunk_within = False
chunk_region_idx = None
chunk_ratio = 1 # use it to estimate chunk mem
chunk_size = 1
chunk_inputs_names = []
if use_chunk:
chunk_regions = [i["region"] for i in chunk_infos]
chunk_starts = [i[0] for i in chunk_regions]
chunk_ends = [i[1] for i in chunk_regions]
chunk_inputs = [i["inputs"] for i in chunk_infos]
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos]
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
j.name for i in chunk_inputs_non_chunk for j in i
]
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if use_chunk and idx in start_nodes:
if use_chunk and idx in chunk_starts:
chunk_within = True
chunk_region_idx = start_nodes.index(idx)
chunk_region_idx = chunk_starts.index(idx)
act_memory += self._get_output_node_size(chunk_outputs[chunk_region_idx]) / (1024**2)
# determine chunk ratio for current node
if chunk_within:
chunk_ratio = self._get_chunk_ratio(
node, chunk_dims[chunk_region_idx], chunk_sizes[chunk_region_idx]
node, chunk_inputs[chunk_region_idx], chunk_inputs_dim[chunk_region_idx], chunk_size
)
act_memory += self._get_output_node_size(
node_list[end_nodes[chunk_region_idx]]
) / (1024**2)
# if node is placeholder, just add the size of the node
if node.op == "placeholder":
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
act_memory_peak_log.append(act_memory)
active_node_list.append(node.name)
# skip output
elif node.op == "output":
continue
# node is an operation, calculate tmp, output node and delete node memory
# no change for non compute node
elif _is_non_compute_node_except_placeholder(node):
act_memory_peak_log.append(act_memory)
# node is a compute op
# calculate tmp, output node and delete node memory
else:
# forward memory
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
act_memory += (
self._get_contiguous_memory(node, not_contiguous_list)
* chunk_ratio
@ -1133,29 +1178,35 @@ class MemoryEstimator(object):
* chunk_ratio
/ (1024**2)
)
# delete unused vars not in chunk_input_list
# we can't delete input nodes until chunk ends
if chunk_within:
act_memory -= self._get_chunk_delete_node_size(
node,
user_to_last_uses_no_free_var,
chunk_ratio,
node_list,
start_nodes[chunk_region_idx],
end_nodes[chunk_region_idx],
chunk_inputs_names
) / (1024**2)
else:
act_memory -= self._get_delete_node_size(
node, user_to_last_uses_no_free_var
) / (1024**2)
act_memory -= (self._get_delete_node_size(
node, user_to_last_uses_no_free_var, chunk_inputs_names
) / (1024**2))
# log active node
# log active node, only effective without chunk
self._add_active_node(node, active_node_list)
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
# if node in chunk end nodes, restore chunk settings
if use_chunk and idx in end_nodes:
if use_chunk and idx in chunk_ends:
act_memory -= (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
act_memory -= self._get_chunk_inputs_size(
chunk_inputs[chunk_region_idx],
chunk_inputs_non_chunk[chunk_region_idx],
node_list,
chunk_regions[chunk_region_idx][1]
) / (1024**2)
chunk_within = False
chunk_ratio = 1
chunk_region_idx = None
@ -1178,11 +1229,11 @@ class ChunkRegionSearch(object):
def __init__(self, gm) -> None:
self.gm = gm
self.node_list = list(gm.graph.nodes)
self.memory_estimator = MemoryEstimator()
self.index_tracer = IndexTracer(gm)
self.index_tracer.trace_index()
self.flow_tracer = FlowTracer(gm)
self.flow_tracer.trace_flow()
self.memory_estimator = MemoryEstimator(self.index_tracer)
def _find_peak_node(self, mem_peak):
max_value = max(mem_peak)
@ -1210,7 +1261,7 @@ class ChunkRegionSearch(object):
min_var = self._get_min_free_var(active_node, free_vars)
# from peak_node to free_var
chunk_region_start = None
chunk_region_start = len(free_vars)
for i in range(peak_node, -1, -1):
if len(active_node[i]) == min_var:
chunk_region_start = i + 1
@ -1218,7 +1269,7 @@ class ChunkRegionSearch(object):
if i in free_vars or i == 0:
raise RuntimeError()
# from peak_node to len-2
chunk_region_end = None
chunk_region_end = len(active_node) - 1
for i in range(peak_node, len(active_node)):
if len(active_node[i]) == min_var:
chunk_region_end = i
@ -1352,7 +1403,7 @@ class ChunkRegionSearch(object):
return False
def search_region(self):
chunk_regions = []
chunk_infos = []
(
init_mem_peak,
_,
@ -1361,25 +1412,19 @@ class ChunkRegionSearch(object):
mem_peak = init_mem_peak
while True:
chunk_region = self._step_search(mem_peak, active_node, chunk_regions)
if chunk_region is None:
chunk_info = self._step_search(mem_peak, active_node, chunk_infos)
if chunk_info is None:
break
chunk_regions.append(chunk_region)
chunk_infos.append(chunk_info)
(
mem_peak,
_,
active_node,
) = self.memory_estimator.estimate_chunk_inference_mem(
self.gm,
[i["region"][0] for i in chunk_regions],
[i["region"][1] for i in chunk_regions],
[i["inputs_dim"] for i in chunk_regions],
[1] * len(chunk_regions),
)
) = self.memory_estimator.estimate_chunk_inference_mem(self.gm, chunk_infos)
if self._stop_search(init_mem_peak, mem_peak):
break
return chunk_regions
return chunk_infos
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
@ -1415,7 +1460,7 @@ def _gen_loop_end(
chunk_slice = _gen_chunk_slice_dim(
chunk_outputs_dim, "chunk_idx", chunk_output_shape
)
context = " chunk_result%s = %s\n" % (chunk_slice, chunk_outputs_name)
context = " chunk_result%s = %s; %s = None\n" % (chunk_slice, chunk_outputs_name, chunk_outputs_name)
context += (
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
)

Loading…
Cancel
Save