mirror of https://github.com/hpcaitech/ColossalAI
fix eval
parent
8a9721bafe
commit
e7a8634636
|
@ -28,6 +28,8 @@ def load_tokenized_dataset(
|
|||
Each instance of dataset is a dictionary with
|
||||
`{'input_ids': List[int], 'labels': List[int], sequence: str}` format.
|
||||
"""
|
||||
if not dataset_paths:
|
||||
return None
|
||||
mode_map = kwargs.get("mode_map", {"train": "train", "dev": "validation", "test": "test"})
|
||||
assert mode in tuple(mode_map), f"Unsupported mode {mode}, it must be in {tuple(mode_map)}"
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Dpo trainer
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
|
@ -324,7 +325,7 @@ class DPOTrainer(SLTrainer):
|
|||
chosen_loss_mask[:, 1:],
|
||||
reject_loss_mask[:, 1:],
|
||||
)
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float().mean()
|
||||
loss = losses.mean()
|
||||
loss_mean = all_reduce_mean(tensor=loss)
|
||||
chosen_rewards_mean = all_reduce_mean(tensor=chosen_rewards)
|
||||
|
@ -343,4 +344,7 @@ class DPOTrainer(SLTrainer):
|
|||
for tag in ["loss", "chosen_rewards", "rejected_rewards", "accuracy", "margin"]:
|
||||
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
||||
self.coordinator.print_on_master(msg)
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
||||
f.write(msg)
|
||||
step_bar.close()
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Orpo trainer
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
|
@ -269,11 +270,10 @@ class ORPOTrainer(SLTrainer):
|
|||
batch_size = chosen_input_ids.size()[0]
|
||||
actor_out = self.model(
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
labels=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)
|
||||
torch.autograd.set_detect_anomaly(True)
|
||||
actor_all_logits = actor_out["logits"].to(torch.float32)
|
||||
chosen_nll = torch.mean(actor_out["loss"][:batch_size]).to(dtype=torch.bfloat16)
|
||||
actor_chosen_logits = actor_all_logits[:batch_size]
|
||||
actor_reject_logits = actor_all_logits[batch_size:]
|
||||
logprob_actor_chosen = calc_masked_log_probs(
|
||||
|
@ -283,14 +283,22 @@ class ORPOTrainer(SLTrainer):
|
|||
logprob_actor_reject = calc_masked_log_probs(
|
||||
actor_reject_logits, reject_input_ids, reject_loss_mask[:, 1:]
|
||||
)
|
||||
|
||||
odds_ratio_loss, log_odds_ratio = self.odds_ratio_loss_fn(logprob_actor_chosen, logprob_actor_reject)
|
||||
|
||||
chosen_logits = actor_chosen_logits[:, :-1, :].contiguous().view(-1, actor_chosen_logits.size(-1))
|
||||
label_chosen = chosen_input_ids[:, 1:].contiguous()
|
||||
label_chosen_masked = (
|
||||
label_chosen.masked_fill(chosen_loss_mask[:, 1:] == 0, -100).view(-1).contiguous().detach()
|
||||
)
|
||||
# label_chosen[chosen_loss_mask[:, 1:] == 0] = -100
|
||||
chosen_nll = self.sft_loss_fn(chosen_logits, label_chosen_masked).to(dtype=torch.bfloat16)
|
||||
odds_ratio_loss, log_odds_ratio = self.odds_ratio_loss_fn(
|
||||
logprob_actor_chosen, logprob_actor_reject, chosen_loss_mask[:, 1:], reject_loss_mask[:, 1:]
|
||||
)
|
||||
loss = chosen_nll - odds_ratio_loss * self.lam
|
||||
step_bar.set_description(f"Epoch {epoch + 1}/{self.max_epochs} Loss: {loss.detach().cpu().item():.4f}")
|
||||
|
||||
chosen_rewards = torch.mean(logprob_actor_chosen).item()
|
||||
rejected_rewards = torch.mean(logprob_actor_reject).item()
|
||||
reward_accuracies = (log_odds_ratio > 0).float().mean().item()
|
||||
chosen_rewards = torch.sum(logprob_actor_chosen) / torch.sum(chosen_loss_mask[:, 1:])
|
||||
rejected_rewards = torch.sum(logprob_actor_reject) / torch.sum(reject_loss_mask[:, 1:])
|
||||
reward_accuracies = torch.sum((log_odds_ratio > 0).float()) / torch.sum(log_odds_ratio != 0)
|
||||
|
||||
# sync
|
||||
loss_mean = all_reduce_mean(tensor=loss)
|
||||
|
@ -303,37 +311,11 @@ class ORPOTrainer(SLTrainer):
|
|||
self.accumulative_meter.add("log_odds_ratio", log_odds_ratio.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item())
|
||||
|
||||
# logging
|
||||
if self.writer and is_rank_0():
|
||||
self.writer.add_scalar("eval/loss", self.accumulative_meter.get("loss"), self.num_train_step)
|
||||
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
|
||||
self.writer.add_scalar(
|
||||
"train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), self.num_train_step
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/rejected_rewards",
|
||||
self.accumulative_meter.get("rejected_rewards"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/log",
|
||||
self.accumulative_meter.get("chosen_rewards") - self.accumulative_meter.get("rejected_rewards"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/accuracy",
|
||||
self.accumulative_meter.get("accuracy"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/log_odds_ratio",
|
||||
self.accumulative_meter.get("log_odds_ratio"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.step_bar.update()
|
||||
|
||||
msg = "Evaluation Result:\n"
|
||||
for tag in ["loss", "chosen_rewards", "rejected_rewards", "log_odds_ratio", "accuracy"]:
|
||||
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
||||
self.coordinator.print_on_master(msg)
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
||||
f.write(msg)
|
||||
step_bar.close()
|
||||
|
|
|
@ -237,6 +237,7 @@ class RewardModelTrainer(SLTrainer):
|
|||
+ f"distance: {self.accumulative_meter.get('chosen_rewards')-self.accumulative_meter.get('rejected_rewards')}\n"
|
||||
)
|
||||
self.coordinator.print_on_master(msg)
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
||||
f.write(msg)
|
||||
step_bar.close()
|
||||
|
|
|
@ -167,6 +167,7 @@ class SFTTrainer(SLTrainer):
|
|||
for tag in ["loss"]:
|
||||
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
||||
self.coordinator.print_on_master(msg)
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
||||
f.write(msg)
|
||||
step_bar.close()
|
||||
|
|
|
@ -176,6 +176,19 @@ def train(args):
|
|||
collate_fn=data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
eval_dataloader = None
|
||||
if args.eval_dataset:
|
||||
eval_dataset = load_tokenized_dataset(dataset_paths=args.eval_dataset, mode="dev")
|
||||
eval_data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
|
||||
eval_dataloader = plugin.prepare_dataloader(
|
||||
dataset=eval_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=eval_data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
if args.warmup_steps is None:
|
||||
|
@ -260,7 +273,7 @@ def train(args):
|
|||
|
||||
trainer.fit(
|
||||
train_preference_dataloader=train_dataloader,
|
||||
eval_preference_dataloader=None,
|
||||
eval_preference_dataloader=eval_dataloader,
|
||||
log_dir=args.log_dir,
|
||||
use_wandb=args.use_wandb,
|
||||
)
|
||||
|
@ -309,6 +322,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--model_type", type=str, default=None)
|
||||
parser.add_argument("--tokenizer_dir", type=str, default=None)
|
||||
parser.add_argument("--dataset", nargs="+", default=[])
|
||||
parser.add_argument("--eval_dataset", nargs="+", default=[])
|
||||
parser.add_argument(
|
||||
"--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint"
|
||||
)
|
||||
|
|
|
@ -164,6 +164,19 @@ def train(args):
|
|||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
eval_dataloader = None
|
||||
if args.eval_dataset:
|
||||
eval_dataset = load_tokenized_dataset(dataset_paths=args.eval_dataset, mode="dev")
|
||||
eval_data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
eval_dataloader = plugin.prepare_dataloader(
|
||||
dataset=eval_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=eval_data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
if args.warmup_steps is None:
|
||||
args.warmup_steps = int(args.max_epochs * 0.025 * (len(train_dataloader) // args.accumulation_steps))
|
||||
|
@ -242,7 +255,7 @@ def train(args):
|
|||
|
||||
trainer.fit(
|
||||
train_preference_dataloader=train_dataloader,
|
||||
eval_preference_dataloader=None,
|
||||
eval_preference_dataloader=eval_dataloader,
|
||||
log_dir=args.log_dir,
|
||||
use_wandb=args.use_wandb,
|
||||
)
|
||||
|
@ -288,6 +301,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--model_type", type=str, default=None)
|
||||
parser.add_argument("--tokenizer_dir", type=str, default=None)
|
||||
parser.add_argument("--dataset", nargs="+", default=[])
|
||||
parser.add_argument("--eval_dataset", nargs="+", default=[])
|
||||
parser.add_argument(
|
||||
"--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint"
|
||||
)
|
||||
|
|
|
@ -173,6 +173,20 @@ def train(args):
|
|||
collate_fn=data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
eval_dataloader = None
|
||||
if args.eval_dataset:
|
||||
eval_dataset = load_tokenized_dataset(dataset_paths=args.eval_dataset, mode="dev")
|
||||
eval_data_collator = DataCollatorForPreferenceDataset(tokenizer=tokenizer, max_length=args.max_length)
|
||||
eval_dataloader = plugin.prepare_dataloader(
|
||||
dataset=eval_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=eval_data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
||||
math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
||||
|
||||
|
@ -297,6 +311,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--pretrain", type=str, default=None)
|
||||
parser.add_argument("--tokenizer_dir", type=str, default=None)
|
||||
parser.add_argument("--dataset", nargs="+", default=[])
|
||||
parser.add_argument("--eval_dataset", nargs="+", default=[])
|
||||
parser.add_argument(
|
||||
"--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint"
|
||||
)
|
||||
|
|
|
@ -173,6 +173,21 @@ def train(args):
|
|||
collate_fn=data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
eval_dataloader = None
|
||||
if args.eval_dataset:
|
||||
eval_dataset = load_tokenized_dataset(dataset_paths=args.eval_dataset, mode="dev")
|
||||
eval_data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_len)
|
||||
|
||||
eval_dataloader = plugin.prepare_dataloader(
|
||||
dataset=eval_dataset,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
collate_fn=eval_data_collator,
|
||||
distributed_sampler_cls=StatefulDistributedSampler,
|
||||
)
|
||||
|
||||
coordinator.print_on_master(
|
||||
f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
||||
)
|
||||
|
@ -255,7 +270,7 @@ def train(args):
|
|||
|
||||
trainer.fit(
|
||||
train_dataloader=train_dataloader,
|
||||
eval_dataloader=None,
|
||||
eval_dataloader=eval_dataloader,
|
||||
log_dir=args.log_dir,
|
||||
use_wandb=args.use_wandb,
|
||||
)
|
||||
|
@ -300,6 +315,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--pretrain", type=str, default=None)
|
||||
parser.add_argument("--tokenizer_dir", type=str, default=None)
|
||||
parser.add_argument("--dataset", nargs="+", default=[])
|
||||
parser.add_argument("--eval_dataset", nargs="+", default=[])
|
||||
parser.add_argument(
|
||||
"--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint"
|
||||
)
|
||||
|
|
|
@ -173,6 +173,7 @@ for lora_rank in ${LORA_RANK[@]}; do
|
|||
--pretrain $pretrain \
|
||||
--tokenizer_dir $tokenizer_dir \
|
||||
--dataset ${dataset[@]} \
|
||||
--eval_dataset ${dataset[@]} \
|
||||
--save_path $MODEL_SAVE_PATH \
|
||||
--config_file $MODELS_DIR/config.jsonl \
|
||||
--lora_rank $lora_rank \
|
||||
|
@ -248,6 +249,7 @@ for lora_rank in ${LORA_RANK[@]}; do
|
|||
--pretrain $pretrain \
|
||||
--tokenizer_dir $tokenizer_dir \
|
||||
--dataset ${dataset[@]} \
|
||||
--eval_dataset ${dataset[@]} \
|
||||
--save_dir $MODEL_SAVE_PATH \
|
||||
--config_file $MODELS_DIR/config.jsonl \
|
||||
--lora_rank $lora_rank \
|
||||
|
@ -423,6 +425,85 @@ for lora_rank in ${LORA_RANK[@]}; do
|
|||
--pretrain $pretrain \
|
||||
--tokenizer_dir $tokenizer_dir \
|
||||
--dataset ${dataset[@]} \
|
||||
--eval_dataset ${dataset[@]} \
|
||||
--save_dir $MODEL_SAVE_PATH \
|
||||
--config_file $MODELS_DIR/config.jsonl \
|
||||
--lora_rank $lora_rank \
|
||||
--plugin $plugin \
|
||||
--batch_size $bs \
|
||||
--max_epochs 1 \
|
||||
--accumulation_steps $grad_accu \
|
||||
--tp $tp \
|
||||
--lr 2e-5 \
|
||||
$grad_ckpt \
|
||||
--max_len 400 \
|
||||
--use_flash_attn
|
||||
passed=$?
|
||||
if [ $passed -eq 0 ]; then
|
||||
rm -rf $MODEL_SAVE_PATH/*
|
||||
rm -rf $MODELS_DIR/*
|
||||
break
|
||||
fi
|
||||
done
|
||||
if [ $passed -ne 0 ]; then
|
||||
echo "[Test]: Failed $model-$plugin-$lora_rank"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
done
|
||||
done
|
||||
|
||||
|
||||
|
||||
echo "[Test]: testing ORPO ..."
|
||||
|
||||
SKIPPED_TESTS=(
|
||||
llama-3d-20 # 3d plugin doesn't support lora
|
||||
llama-gemini_auto-20 # gemini_auto plugin doesn't support lora
|
||||
llama-gemini-20 # gemini doesn't support lora
|
||||
)
|
||||
GRAD_CKPTS=('--grad_checkpoint')
|
||||
for lora_rank in ${LORA_RANK[@]}; do
|
||||
for model in ${MODELS[@]}; do
|
||||
for plugin in ${PLUGINS[@]}; do
|
||||
if [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin-$lora_rank " ]]; then
|
||||
echo "[Test]: Skipped $model-$plugin-$lora_rank"
|
||||
continue
|
||||
elif [[ " ${SKIPPED_TESTS[*]} " =~ " $model-$plugin " ]]; then
|
||||
echo "[Test]: Skipped $model-$plugin"
|
||||
continue
|
||||
fi
|
||||
pretrain=$(get_pretrain $model)
|
||||
tokenizer_dir=$(get_tokenizer_dirs $model)
|
||||
grad_ckpt=$(random_choice "${GRAD_CKPTS[@]}")
|
||||
tp='1'
|
||||
bs='2'
|
||||
if [[ $plugin == "3d" ]]; then
|
||||
tp='4'
|
||||
bs='8'
|
||||
fi
|
||||
grad_accu='2'
|
||||
# gemini_auto and gemini doesn't support gradient accumulation
|
||||
if [[ $plugin == "gemini_auto" ]]; then
|
||||
grad_accu='1'
|
||||
fi
|
||||
# gemini_auto doesn't support generation
|
||||
# (need to calculate ref_model logits through forwarding in inference mode)
|
||||
if [[ $plugin == "gemini_auto" ]]; then
|
||||
echo "[Test]: Skipped $model-$plugin"
|
||||
continue
|
||||
fi
|
||||
for i in $(seq $NUM_RETRY); do
|
||||
echo "[Test]: $model-$plugin-$lora_rank, attempt $i"
|
||||
declare -a dataset=()
|
||||
for split in $(seq -f "%05g" 0 0); do
|
||||
dataset+=("$TEMP_DIR/rlhf_data/tokenized_${model}_preference/arrow/part-$split")
|
||||
done
|
||||
colossalai run --nproc_per_node 4 --master_port 31332 $EXAMPLES_DIR/training_scripts/train_orpo.py \
|
||||
--pretrain $pretrain \
|
||||
--tokenizer_dir $tokenizer_dir \
|
||||
--dataset ${dataset[@]} \
|
||||
--eval_dataset ${dataset[@]} \
|
||||
--save_dir $MODEL_SAVE_PATH \
|
||||
--config_file $MODELS_DIR/config.jsonl \
|
||||
--lora_rank $lora_rank \
|
||||
|
|
Loading…
Reference in New Issue