[fp16] refactored fp16 optimizer (#392)

pull/417/head
Frank Lee 2022-03-15 10:05:38 +08:00 committed by GitHub
parent f8a0e7fb01
commit e79ea44247
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 371 additions and 345 deletions

View File

@ -1,13 +1,12 @@
import inspect
import torch.nn as nn
from torch.optim import Optimizer
from colossalai.utils import is_no_pp_or_last_stage
from .naive_amp import NaiveAMPOptimizer, NaiveAMPModel
from .grad_scaler import DynamicGradScaler, ConstantGradScaler
def convert_to_naive_amp(model: nn.Module,
optimizer: Optimizer,
amp_config):
def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
"""A helper function to wrap training components with naive AMP modules
:param model: your model object
@ -31,7 +30,19 @@ def convert_to_naive_amp(model: nn.Module,
output_to_fp32 = is_no_pp_or_last_stage()
model = NaiveAMPModel(model, output_to_fp32=output_to_fp32)
optimizer = NaiveAMPOptimizer(optimizer, **amp_config)
use_dynamic_grad_scaler = amp_config.pop('dynamic_grad_scale', True)
if use_dynamic_grad_scaler:
scaler_class = DynamicGradScaler
else:
scaler_class = ConstantGradScaler
sig = inspect.signature(scaler_class.__init__)
kwargs = dict()
for param in sig.parameters.values():
if param.name in amp_config:
kwargs[param.name] = amp_config.pop(param.name)
grad_scaler = scaler_class(**kwargs)
optimizer = NaiveAMPOptimizer(optimizer, grad_scaler, **amp_config)
return model, optimizer

View File

@ -2,6 +2,7 @@
# -*- encoding: utf-8 -*-
import torch
import torch.distributed as dist
try:
import colossal_C
@ -9,41 +10,30 @@ except:
print('Colossalai should be built with cuda extension to use the FP16 optimizer')
from torch.optim import Optimizer
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from colossalai.logging import get_dist_logger
from colossalai.utils import (print_rank_0, copy_tensor_parallel_attributes,
clip_grad_norm_fp32, count_zeros_fp32, multi_tensor_applier)
from colossalai.utils import (copy_tensor_parallel_attributes, clip_grad_norm_fp32, multi_tensor_applier)
from torch.distributed import ProcessGroup
from .grad_scaler import BaseGradScaler
from ._utils import has_inf_or_nan, zero_gard_by_list
def _zero_grad_group_helper(group, set_to_none):
"""Zero out the gradient for a group of parameters.
Note: copied from torch.optim.optimizer."""
for param in group:
if param.grad is not None:
if set_to_none:
param.grad = None
else:
if param.grad.grad_fn is not None:
param.grad.detach_()
else:
param.grad.requires_grad_(False)
param.grad.zero_()
__all__ = ['FP16Optimizer']
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
"""Use multi-tensor-applier to copy values from one list to another.
"""
adapted from Megatron-LM (https://github.com/NVIDIA/Megatron-LM)
Use multi-tensor-applier to copy values from one list to another.
We don't have a blfoat16 implementation so for now if the overflow_buf
is not provided, we default back to simple loop copy to be compatible
with bfloat16."""
with bfloat16.
"""
if overflow_buf:
overflow_buf.fill_(0)
# Scaling with factor `1.0` is equivalent to copy.
multi_tensor_applier(colossal_C.multi_tensor_scale,
overflow_buf,
[this, that],
1.0)
multi_tensor_applier(colossal_C.multi_tensor_scale, overflow_buf, [this, that], 1.0)
else:
for this_, that_ in zip(this, that):
that_.copy_(this_)
@ -111,8 +101,7 @@ class DynamicGradScaler:
self._hysteresis_tracker -= 1
# Now if we are out of hysteresis count, scale down the loss.
if self._hysteresis_tracker <= 0:
self._scale = torch.max(self._scale * self.backoff_factor,
self.min_scale)
self._scale = torch.max(self._scale * self.backoff_factor, self.min_scale)
if self.verbose:
self._logger.info(f'overflow occurs, loss scale is adjusted to {self._scale}', ranks=[0])
else:
@ -127,12 +116,13 @@ class DynamicGradScaler:
if self._max_scale is not None and self._scale >= self._max_scale:
if self.verbose:
self._logger.info(
f'Current loss scale {self._scale} has reached the max scale {self._max_scale} allowed', ranks=[0])
f'Current loss scale {self._scale} has reached the max scale {self._max_scale} allowed',
ranks=[0])
else:
self._scale = self._scale * self.growth_factor
if self.verbose:
self._logger.info(
f'no consecutive overflow, loss scale is adjusted to {self._scale}', ranks=[0])
self._logger.info(f'no consecutive overflow, loss scale is adjusted to {self._scale}',
ranks=[0])
def state_dict(self):
state_dict = {}
@ -173,326 +163,241 @@ class FP16Optimizer(Optimizer):
"""
def __init__(self,
optimizer,
clip_grad=0,
log_num_zeros_in_grad=False,
initial_scale=2 ** 32,
min_scale=1,
growth_factor=2,
backoff_factor=0.5,
growth_interval=1000,
hysteresis=2,
max_scale: int = 2 ** 32,
verbose: bool = False):
# default args for compatibility
bf16 = False
params_have_main_grad = False
optimizer: Optimizer,
grad_scaler: BaseGradScaler,
verbose: bool = False,
clip_grad_norm=0,
dp_process_group: ProcessGroup = None,
mp_process_group: ProcessGroup = None):
# have a defaults for compatibility with pytorch optim
self.defaults = optimizer.defaults
self._optimizer = optimizer
self._defaults = optimizer.defaults
# log config
self._logger = get_dist_logger()
if verbose:
self._logger.info(f"\n========= FP16 Optimizer Config =========\n"
f"Optimizer: {optimizer.__class__.__name__}\n"
f"clip_grad = {clip_grad}\n"
f"log_num_zeros_in_grad = {log_num_zeros_in_grad}\n"
f"initial_scale = {initial_scale}\n"
f"min_scale = {min_scale}\n"
f"growth_factor = {growth_factor}\n"
f"backoff_factor = {backoff_factor}\n"
f"growth_interval = {growth_interval}\n"
f"hysteresis = {hysteresis}\n"
f"==========================================", ranks=[0])
# fp16-related params
assert isinstance(grad_scaler, BaseGradScaler)
self._grad_scaler = grad_scaler
self._found_overflow = torch.cuda.FloatTensor([0.0])
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
"""Input optimizer is the base optimizer for example Adam."""
self.optimizer = optimizer
assert self.optimizer, 'no optimizer is provided.'
# Set gradient clipping and logging params.
self.clip_grad = clip_grad
self.log_num_zeros_in_grad = log_num_zeros_in_grad
self.params_have_main_grad = params_have_main_grad
# misc params
self._clip_grad_max_norm = clip_grad_norm
self.bf16 = bf16
self.grad_scaler = DynamicGradScaler(
initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale,
verbose=verbose
)
# get process group
def _get_process_group(parallel_mode):
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA):
return gpc.get_group(ParallelMode.DATA)
else:
return None
# None grad scaler is only supported for bf16.
if self.grad_scaler is None:
assert self.bf16, 'fp16 expects a grad scaler.'
if dp_process_group is None:
dp_process_group = _get_process_group(ParallelMode.DATA)
if mp_process_group is None:
mp_process_group = _get_process_group(ParallelMode.MODEL)
# Tensor used to determine if a nan/if has happend.
# Any non-zero value indicates inf/nan.
# Note that we keep this for the cases that grad scaler is none.
# We still record nan/inf if we have a bfloat16 with a grad scaler.
if self.grad_scaler:
self.found_inf = torch.cuda.FloatTensor([0.0])
self._dp_process_group = dp_process_group
self._mp_process_group = mp_process_group
# Dummy tensor needed for apex multi-apply tensor.
# For bfloat, we don't have multi-tensor apply and for now
# we set it to none so the multi-tensor apply gets ignored.
if bf16:
self._dummy_overflow_buf = None
else:
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
# In case grad scaler is not passed, define the unity scale.
if self.grad_scaler is None:
self._scale_one = torch.cuda.FloatTensor([1.0])
# ======================
# main parameter stuff
# ======================
# Three groups of parameters:
# float16_groups: original float16 parameters
# fp32_from_float16_groups: fp32 copy of float16 parameters
# fp32_from_fp32_groups: original fp32 parameters
self.float16_groups = []
self.fp32_from_float16_groups = []
self.fp32_from_fp32_groups = []
# we maintain three groups of parameters
# so that the model can have a mixture
# of fp16 and fp32 params
# fp16_param_groups: the fp16 params of the model
# fp32_master_param_groups: the fp32 params cast from the fp16 param of the model
# fp32_param_groups: the fp32 params of the model
# NOTE:
# 1. fp16_param_groups and fp32_master_param_groups have one-to-one correspondence
# 2. fp32_param_groups and fp16_param_groups are exclusive of each other
self._fp16_param_groups = []
self._fp32_master_param_groups = []
self._fp32_param_groups = []
# For all the groups in the original optimizer:
for param_group in self.optimizer.param_groups:
float16_params_this_group = []
fp32_params_this_group = []
fp32_from_float16_params_this_group = []
for param_group in self._optimizer.param_groups:
fp16_params = []
fp32_master_params = []
fp32_params = []
# For all the parameters in this group:
for i, param in enumerate(param_group['params']):
if param.requires_grad:
# float16 params:
if param.type() in ['torch.cuda.HalfTensor',
'torch.cuda.BFloat16Tensor']:
float16_params_this_group.append(param)
# Create a copy
main_param = param.detach().clone().float()
# Copy tensor model parallel attributes.
copy_tensor_parallel_attributes(param, main_param)
if param.type() in ['torch.cuda.HalfTensor']:
fp16_params.append(param)
# if hasattr(param, 'shared'):
# main_param.shared = param.shared
# Create a fp32 copy
fp32_param = param.detach().clone().float()
# Copy tensor model parallel attributes.
copy_tensor_parallel_attributes(param, fp32_param)
# Replace the optimizer params with the new fp32 copy.
param_group['params'][i] = main_param
fp32_from_float16_params_this_group.append(main_param)
param_group['params'][i] = fp32_param
fp32_master_params.append(fp32_param)
# Reset existing state dict key to the new main param.
if param in self.optimizer.state:
self.optimizer.state[main_param] \
= self.optimizer.state.pop(param)
if param in self._optimizer.state:
self._optimizer.state[fp32_param] = self._optimizer.state.pop(param)
# fp32 params.
elif param.type() == 'torch.cuda.FloatTensor':
fp32_params_this_group.append(param)
param_group['params'][i] = param
fp32_params.append(param)
else:
raise TypeError('Wrapped parameters must be one of '
'torch.cuda.FloatTensor, '
'torch.cuda.HalfTensor, or '
'torch.cuda.BFloat16Tensor. '
'Received {}'.format(param.type()))
raise TypeError('Expected parameter of type torch.cuda.FloatTensor '
f'or torch.cuda.HalfTensor, but got {param.type()}')
self.float16_groups.append(float16_params_this_group)
self.fp32_from_float16_groups.append(
fp32_from_float16_params_this_group)
self.fp32_from_fp32_groups.append(fp32_params_this_group)
self._fp16_param_groups.append(fp16_params)
self._fp32_master_param_groups.append(fp32_master_params)
self._fp32_param_groups.append(fp32_params)
# Leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors
self.optimizer.load_state_dict(self.optimizer.state_dict())
self._optimizer.load_state_dict(self._optimizer.state_dict())
def zero_grad(self, set_to_none=False):
"""We only need to zero the model related parameters, i.e.,
float16_groups & fp32_from_fp32_groups."""
for group in self.float16_groups:
_zero_grad_group_helper(group, set_to_none)
for group in self.fp32_from_fp32_groups:
_zero_grad_group_helper(group, set_to_none)
# log config
self._logger = get_dist_logger()
if verbose:
self._logger.info(
f"\n========= FP16 Optimizer Config =========\n"
f"Optimizer: {optimizer.__class__.__name__}\n"
f"clip_grad_norm = {clip_grad_norm}\n"
f"grad_scaler = {self._grad_scaler.__class__.__name__}"
f"==========================================",
ranks=[0])
def get_loss_scale(self):
if self.grad_scaler is None:
return self._scale_one
return self.grad_scaler.scale
@property
def grad_scaler(self):
return self._grad_scaler
def _copy_model_grads_to_main_grads(self):
@property
def loss_scale(self):
return self._grad_scaler.scale
@property
def optimizer(self):
return self._optimizer
@property
def defaults(self):
return self._defaults
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(0.0)
# check for overflow
for group in self._optimizer.param_groups:
for p in group['params']:
if has_inf_or_nan(p.grad):
self._found_overflow.fill_(1.0)
break
# all-reduce across dp group
if self._dp_process_group:
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._dp_process_group)
# all-reduce over model parallel group
if self._mp_process_group:
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._mp_process_group)
return self._found_overflow.item() > 0
def zero_grad(self, set_to_none=True):
# set_to_none = True can save some memory space
for param_group in self._optimizer.param_groups:
zero_gard_by_list(param_group['params'], set_to_none=set_to_none)
def _get_fp32_param_groups_to_update(self):
return self._fp32_master_param_groups + self._fp32_param_groups
def _unscale_grads(self):
for group in self._get_fp32_param_groups_to_update():
for p in group:
if p.grad is not None:
p.grad.data.div_(self.loss_scale)
def _assign_grad_to_fp32_master_param(self):
# This only needs to be done for the float16 group.
for model_group, main_group in zip(self.float16_groups,
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
if self.params_have_main_grad:
main_param.grad = model_param.main_grad.float()
else:
if model_param.grad is not None:
main_param.grad = model_param.grad.float()
for fp16_param_group, fp32_master_param_group in zip(self._fp16_param_groups, self._fp32_master_param_groups):
for fp16_param, fp32_param in zip(fp16_param_group, fp32_master_param_group):
fp32_param.grad = fp16_param.grad.float()
# clear unneeded grad on fp16 param
fp16_param.grad = None
# For fp32 grads, we need to reset the grads to main grad.
if self.params_have_main_grad:
for model_group in self.fp32_from_fp32_groups:
for model_param in model_group:
model_param.grad = model_param.main_grad
def _unscale_main_grads_and_check_for_nan(self):
main_grads = []
# fp32 params fromm float16 ones.
for main_group in self.fp32_from_float16_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
# Append fp32 parameters.
for main_group in self.fp32_from_fp32_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
# Reset found inf.
self.found_inf.fill_(0.0)
# Unscale and set found inf/nan
torch._amp_foreach_non_finite_check_and_unscale_(
main_grads, self.found_inf, self.grad_scaler.inv_scale)
# Update across all model parallel instances.
torch.distributed.all_reduce(self.found_inf,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.MODEL))
# Check for nan.
found_inf_flag = (self.found_inf.item() > 0)
return found_inf_flag
def _get_model_and_main_params_data_float16(self):
model_data = []
main_data = []
for model_group, main_group in zip(self.float16_groups,
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_main_params_to_model_params(self):
# Only needed for the float16 params.
model_data, main_data = self._get_model_and_main_params_data_float16()
_multi_tensor_copy_this_to_that(this=main_data, that=model_data,
def _update_fp16_param_from_fp32_param(self):
fp16_param_data = []
fp32_master_param_data = []
for fp16_group, fp32_group in zip(self._fp16_param_groups, self._fp32_master_param_groups):
for fp16_param, fp32_param in zip(fp16_group, fp32_group):
fp16_param_data.append(fp16_param.data)
fp32_master_param_data.append(fp32_param.data)
_multi_tensor_copy_this_to_that(this=fp32_master_param_data,
that=fp16_param_data,
overflow_buf=self._dummy_overflow_buf)
def _copy_model_params_to_main_params(self):
# Only needed for the float16 params.
model_data, main_data = self._get_model_and_main_params_data_float16()
_multi_tensor_copy_this_to_that(this=model_data, that=main_data,
overflow_buf=self._dummy_overflow_buf)
def reload_model_params(self):
self._copy_model_params_to_main_params()
@torch.no_grad()
def step(self):
# Copy gradients from model params to main params.
self._copy_model_grads_to_main_grads()
self._assign_grad_to_fp32_master_param()
self._unscale_grads()
# Do unscale, check for inf, and update grad scaler only for
# the case that grad scaler is provided.
if self.grad_scaler:
overflow = self._check_overflow()
self._grad_scaler.update(overflow)
# Unscale and check for inf/nan.
found_inf_flag = self._unscale_main_grads_and_check_for_nan()
# We are done with scaling gradients
# so we can update the loss scale.
self.grad_scaler.update(found_inf_flag)
# If we found inf/nan, skip the update.
if found_inf_flag:
return False, None, None
if overflow:
self.zero_grad()
return False, None
# Clip the main gradients.
grad_norm = None
if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad)
# count the zeros in the grads
num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None
if self._clip_grad_max_norm > 0.0:
grad_norm = self.clip_grad_norm(self._clip_grad_max_norm)
# Step the optimizer.
self.optimizer.step()
self._optimizer.step()
# Update params from main params.
self._copy_main_params_to_model_params()
self._update_fp16_param_from_fp32_param()
# Successful update.
return True, grad_norm, num_zeros_in_grad
return True, grad_norm
def backward(self, loss):
scaled_loss = loss * self.grad_scaler.scale
scaled_loss.backward()
def state_dict(self):
state_dict = {}
state_dict['optimizer'] = self.optimizer.state_dict()
state_dict['optimizer'] = self._optimizer.state_dict()
if self.grad_scaler:
state_dict['grad_scaler'] = self.grad_scaler.state_dict()
state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
state_dict['fp32_master_param_groups'] = self._fp32_master_param_groups
return state_dict
def load_state_dict(self, state_dict):
# Optimizer.
optimizer_key = 'optimizer'
if optimizer_key not in state_dict:
optimizer_key = 'optimizer_state_dict'
print_rank_0('***WARNING*** loading optimizer from '
'an old checkpoint ...')
self.optimizer.load_state_dict(state_dict[optimizer_key])
self._optimizer.load_state_dict(state_dict['optimizer'])
# Grad scaler.
if 'grad_scaler' not in state_dict:
print_rank_0('***WARNING*** found an old checkpoint, will not '
'load grad scaler ...')
else:
if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
else:
print_rank_0('***WARNING*** fould the grad scaler in the '
'checkpoint but it is None in the class. '
'Skipping loading grad scaler ...')
if 'grad_scaler' in state_dict:
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
# Copy data for the main params.
fp32_from_float16_params_key = 'fp32_from_fp16_params'
if fp32_from_float16_params_key not in state_dict:
fp32_from_float16_params_key = 'fp32_from_fp16'
for current_group, saved_group in zip(
self.fp32_from_float16_groups,
state_dict[fp32_from_float16_params_key]):
for current_param, saved_param in zip(current_group, saved_group):
current_param.data.copy_(saved_param.data)
def get_parameters(self):
params = []
for param_group in self.optimizer.param_groups:
for param in param_group['params']:
params.append(param)
return params
if 'fp32_master_param_groups' in state_dict:
for current_group, ckpt_group in zip(self._fp32_master_param_groups,
state_dict['fp32_master_param_groups']):
for current_param, ckpt_param in zip(current_group, ckpt_group):
current_param.data.copy_(ckpt_param.data)
def clip_grad_norm(self, clip_grad):
params = self.get_parameters()
params = []
for param_group in self._optimizer.param_groups:
for param in param_group['params']:
params.append(param)
return clip_grad_norm_fp32(params, clip_grad)
def count_zeros(self):
params = self.get_parameters()
return count_zeros_fp32(params)
def scale_loss(self, loss):
"""Simple scaling."""
return self.get_loss_scale() * loss
# Promote state so it can be retrieved or set via
# "optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
return self._optimizer.state
def _set_state(self, value):
self.optimizer.state = value
self._optimizer.state = value
state = property(_get_state, _set_state)
@ -500,9 +405,9 @@ class FP16Optimizer(Optimizer):
# "optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
return self._optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
self._optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)

View File

@ -0,0 +1,40 @@
from typing import List
from torch import Tensor
def has_inf_or_nan(tensor):
try:
# if tensor is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as tensor
# (which is true for some recent version of pytorch).
tensor_sum = float(tensor.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# tensor_sum = float(tensor.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if tensor_sum == float('inf') or tensor_sum == -float('inf') or tensor_sum != tensor_sum:
return True
return False
def zero_gard_by_list(tensor_list: List[Tensor], set_to_none: bool = True) -> None:
"""
Clear the gradient of a list of tensors,
Note: copied from torch.optim.optimizer.
"""
for param in tensor_list:
if param.grad is not None:
if set_to_none:
param.grad = None
else:
if param.grad.grad_fn is not None:
param.grad.detach_()
else:
param.grad.requires_grad_(False)
param.grad.zero_()

View File

@ -28,12 +28,10 @@ class BaseGradScaler(ABC):
def inv_scale(self) -> Tensor:
return self._scale.double().reciprocal().float()
@abstractmethod
def state_dict(self) -> Dict:
state_dict = dict()
state_dict['scale'] = self.scale
@abstractmethod
def load_state_dict(self, state_dict: Dict) -> None:
self._scale = state_dict['scale']

View File

@ -16,11 +16,19 @@ class DynamicGradScaler(BaseGradScaler):
growth_interval: int = 1000,
min_scale: int = None,
max_scale: int = None,
hysteresis: int = None,
hysteresis: int = 2,
verbose: bool = False):
super().__init__(initial_scale, verbose)
self._min_scale = min_scale
self._max_scale = max_scale
if min_scale:
self._min_scale = torch.cuda.FloatTensor([min_scale])
else:
self._min_scale = None
if max_scale:
self._max_scale = torch.cuda.FloatTensor([max_scale])
else:
self._max_scale = None
self._growth_factor = growth_factor
self._backoff_factor = backoff_factor
self._growth_interval = growth_interval

View File

@ -26,17 +26,11 @@ class NaiveAMPOptimizer(ColossalaiOptimizer):
"""
def __init__(self, optim: Optimizer, *args, **kwargs):
optim = FP16Optimizer(optimizer=optim, *args, **kwargs)
optim = FP16Optimizer(optim, *args, **kwargs)
super().__init__(optim)
def backward(self, loss: Tensor):
"""Backward with gradient scaler
:param loss: loss computed by a loss function
:type loss: torch.Tensor
"""
loss = self.optim.scale_loss(loss)
loss.backward()
self.optim.backward(loss)
def step(self):
return self.optim.step()

View File

@ -304,7 +304,7 @@ def initialize(model: nn.Module,
if is_using_pp():
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
if amp_mode == AMP_TYPE.NAIVE:
cfg_['clip_grad'] = clip_grad_norm
cfg_['clip_grad_norm'] = clip_grad_norm
model, optimizer, criterion = convert_to_amp(model=model,
optimizer=optimizer,
criterion=criterion,

View File

@ -1,4 +1,3 @@
from itertools import groupby
from colossalai.utils.cuda import get_current_device
import torch
import torch.distributed as dist
@ -7,7 +6,7 @@ from torch.optim import Optimizer
from .bookkeeping import ParameterStore, GradientStore, BucketStore, TensorBucket
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.amp.naive_amp._fp16_optimizer import DynamicGradScaler
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
from colossalai.nn.optimizer import ColossalaiOptimizer
from ._utils import (move_tensor, flatten, get_grad_accumulate_object, split_half_float_double, reduce_tensor,
release_param_grad, calculate_global_norm_from_list, compute_norm, sync_param, has_inf_or_nan)
@ -16,38 +15,26 @@ from functools import partial
class ShardedOptimizer(ColossalaiOptimizer):
def __init__(
self,
optimizer: Optimizer,
# grad scaler config
initial_scale=2**32,
min_scale=1,
growth_factor=2,
backoff_factor=0.5,
growth_interval=1000,
hysteresis=2,
max_scale: int = 2**32,
# grad clipping
clip_grad_norm=2.0,
verbose=False,
# communication
reduce_bucket_size=500000000,
communication_dtype=torch.float16,
overlap_communication=False,
# stage 2
partition_grad=False,
dp_parallel_mode=ParallelMode.DATA,
mp_parallel_mode=ParallelMode.MODEL,
# cpu offload
cpu_offload=False,
cpu_fp16_param=False,
cpu_fp16_grad=False):
def __init__(self,
optimizer: Optimizer,
initial_scale=2**32,
min_scale=1,
growth_factor=2,
backoff_factor=0.5,
growth_interval=1000,
hysteresis=2,
max_scale: int = 2**32,
clip_grad_norm=2.0,
verbose=False,
reduce_bucket_size=500000000,
communication_dtype=torch.float16,
overlap_communication=False,
partition_grad=False,
dp_parallel_mode=ParallelMode.DATA,
mp_parallel_mode=ParallelMode.MODEL,
cpu_offload=False,
cpu_fp16_param=False,
cpu_fp16_grad=False):
# TODO: add support for
# 1. fp16 master weights
@ -263,6 +250,7 @@ class ShardedOptimizer(ColossalaiOptimizer):
# args here is not grad, but allow_unreacable and accumulate_grad
def reduce_grad_hook(*args):
reduction_func()
accum_grad_obj.register_hook(reduce_grad_hook)
_define_and_attach(param, reduce_rank)
@ -293,8 +281,8 @@ class ShardedOptimizer(ColossalaiOptimizer):
def _reduce_grads_in_bucket(self, reduce_rank=None):
# reduce grads
self._reduce_grads_by_rank(reduce_rank=reduce_rank,
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank))
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank))
# use communication stream if overlapping
# communication with computation
@ -444,7 +432,6 @@ class ShardedOptimizer(ColossalaiOptimizer):
self._grad_store._averaged_gradients[group_id] = []
self._grad_store._averaged_gradients[group_id] = []
# unscale and clip grads
global_norm = calculate_global_norm_from_list(norm_list=norm_groups)
self._unscale_and_clip_grads(single_grad_partition_groups, global_norm)

View File

@ -4,7 +4,7 @@ from typing import Callable, Dict, Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.amp.naive_amp._fp16_optimizer import DynamicGradScaler
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.optimizer import ColossalaiOptimizer

View File

@ -0,0 +1,83 @@
import torch
import colossalai
import copy
import pytest
import torch.multiprocessing as mp
from colossalai.amp import convert_to_naive_amp
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.utils import free_port
from functools import partial
def check_equal(a, b):
"""
This function checks if two tensors are equal within tolerance
"""
assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}'
def run_naive_amp():
"""
In this test, we compare the naive fp16 optimizer implemented in colossalai
and fp32 torch optimizer
"""
# create layer
test_models = ['repeated_computed_layers', 'nested_model']
for test_name in test_models:
get_component_func = non_distributed_component_funcs.get_callable(test_name)
model_builder, train_dataloader, _, optim_builder, _ = get_component_func()
# create model
amp_model = model_builder(checkpoint=True).cuda()
torch_model = copy.deepcopy(amp_model)
# create optimizer
amp_optimizer = optim_builder(amp_model)
torch_optimizer = optim_builder(torch_model)
# inject naive amp
amp_config = dict(initial_scale=1)
amp_model, amp_optimizer = convert_to_naive_amp(amp_model, amp_optimizer, amp_config)
# create data
data_iter = iter(train_dataloader)
data, label = next(data_iter)
data = data.cuda()
# forward pass
amp_output = amp_model(data)
torch_output = torch_model(data)
assert torch.allclose(amp_output, torch_output, rtol=1e-3, atol=1e-3), f'{amp_output} vs {torch_output}'
# backward
amp_optimizer.backward(amp_output.mean())
torch_output.mean().backward()
# check grad
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()):
torch.allclose(amp_param.grad, torch_param.grad.half(), rtol=1e-3, atol=1e-3)
# step
amp_optimizer.step()
torch_optimizer.step()
# check updated param
for amp_param, torch_param in zip(amp_model.parameters(), torch_model.parameters()):
torch.allclose(amp_param, torch_param.half(), rtol=1e-3, atol=1e-3)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
run_naive_amp()
@pytest.mark.dist
def test_naive_amp():
world_size = 1
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_naive_amp()