mirror of https://github.com/hpcaitech/ColossalAI
[fix] rm use_zbv flag in Shardconfig; rm debug info;
parent
90939b77e0
commit
e76308c6e6
|
@ -1201,7 +1201,6 @@ class HybridParallelPlugin(PipelinePluginBase):
|
||||||
gradient_checkpoint_config=gradient_checkpoint_config,
|
gradient_checkpoint_config=gradient_checkpoint_config,
|
||||||
fp8_communication=fp8_communication,
|
fp8_communication=fp8_communication,
|
||||||
inner_ring_size=inner_ring_size,
|
inner_ring_size=inner_ring_size,
|
||||||
use_zbv=(pp_style == "zbv"),
|
|
||||||
)
|
)
|
||||||
self.amp_config = dict(
|
self.amp_config = dict(
|
||||||
initial_scale=initial_scale,
|
initial_scale=initial_scale,
|
||||||
|
|
|
@ -373,7 +373,6 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
|
||||||
make_vocab_size_divisible_by=make_vocab_size_divisible_by,
|
make_vocab_size_divisible_by=make_vocab_size_divisible_by,
|
||||||
gradient_checkpoint_config=gradient_checkpoint_config,
|
gradient_checkpoint_config=gradient_checkpoint_config,
|
||||||
fp8_communication=fp8_communication,
|
fp8_communication=fp8_communication,
|
||||||
use_zbv=(pp_style == "zbv"),
|
|
||||||
)
|
)
|
||||||
self.amp_config = dict(
|
self.amp_config = dict(
|
||||||
initial_scale=initial_scale,
|
initial_scale=initial_scale,
|
||||||
|
|
|
@ -60,6 +60,11 @@ class LlamaPolicy(Policy):
|
||||||
else:
|
else:
|
||||||
norm_cls = RMSNorm
|
norm_cls = RMSNorm
|
||||||
|
|
||||||
|
if self.pipeline_stage_manager:
|
||||||
|
use_zbv = self.pipeline_stage_manager.use_zbv
|
||||||
|
else:
|
||||||
|
use_zbv = False
|
||||||
|
|
||||||
sp_mode = self.shard_config.sequence_parallelism_mode or None
|
sp_mode = self.shard_config.sequence_parallelism_mode or None
|
||||||
sp_size = self.shard_config.sequence_parallel_size or None
|
sp_size = self.shard_config.sequence_parallel_size or None
|
||||||
sp_group = self.shard_config.sequence_parallel_process_group or None
|
sp_group = self.shard_config.sequence_parallel_process_group or None
|
||||||
|
@ -129,7 +134,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -138,7 +143,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -147,7 +152,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -156,7 +161,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -165,7 +170,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -174,7 +179,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -183,7 +188,7 @@ class LlamaPolicy(Policy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
seq_parallel_mode=sp_mode,
|
seq_parallel_mode=sp_mode,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
|
@ -413,6 +418,10 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
||||||
from transformers import LlamaForSequenceClassification
|
from transformers import LlamaForSequenceClassification
|
||||||
|
|
||||||
policy = super().module_policy()
|
policy = super().module_policy()
|
||||||
|
if self.pipeline_stage_manager:
|
||||||
|
use_zbv = self.pipeline_stage_manager.use_zbv
|
||||||
|
else:
|
||||||
|
use_zbv = False
|
||||||
|
|
||||||
if self.shard_config.enable_tensor_parallelism:
|
if self.shard_config.enable_tensor_parallelism:
|
||||||
# add a new item for sequence classification
|
# add a new item for sequence classification
|
||||||
|
@ -425,6 +434,7 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
gather_output=True,
|
gather_output=True,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
|
@ -52,6 +52,10 @@ class MixtralPolicy(Policy):
|
||||||
sp_group = self.shard_config.sequence_parallel_process_group or None
|
sp_group = self.shard_config.sequence_parallel_process_group or None
|
||||||
sp_partial_derived = sp_mode in ["split_gather", "ring"]
|
sp_partial_derived = sp_mode in ["split_gather", "ring"]
|
||||||
tp_size = self.shard_config.tensor_parallel_size
|
tp_size = self.shard_config.tensor_parallel_size
|
||||||
|
if self.pipeline_stage_manager:
|
||||||
|
use_zbv = self.pipeline_stage_manager.use_zbv
|
||||||
|
else:
|
||||||
|
use_zbv = False
|
||||||
|
|
||||||
# modified for both SP and TP
|
# modified for both SP and TP
|
||||||
num_q_heads = self.model.config.num_attention_heads
|
num_q_heads = self.model.config.num_attention_heads
|
||||||
|
@ -126,7 +130,7 @@ class MixtralPolicy(Policy):
|
||||||
target_module=Linear1D_Col,
|
target_module=Linear1D_Col,
|
||||||
kwargs={
|
kwargs={
|
||||||
"fp8_communication": self.shard_config.fp8_communication,
|
"fp8_communication": self.shard_config.fp8_communication,
|
||||||
"use_zbv": self.shard_config.use_zbv,
|
"use_zbv": use_zbv,
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -134,7 +138,7 @@ class MixtralPolicy(Policy):
|
||||||
target_module=Linear1D_Col,
|
target_module=Linear1D_Col,
|
||||||
kwargs={
|
kwargs={
|
||||||
"fp8_communication": self.shard_config.fp8_communication,
|
"fp8_communication": self.shard_config.fp8_communication,
|
||||||
"use_zbv": self.shard_config.use_zbv,
|
"use_zbv": use_zbv,
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -142,7 +146,7 @@ class MixtralPolicy(Policy):
|
||||||
target_module=Linear1D_Col,
|
target_module=Linear1D_Col,
|
||||||
kwargs={
|
kwargs={
|
||||||
"fp8_communication": self.shard_config.fp8_communication,
|
"fp8_communication": self.shard_config.fp8_communication,
|
||||||
"use_zbv": self.shard_config.use_zbv,
|
"use_zbv": use_zbv,
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -150,7 +154,7 @@ class MixtralPolicy(Policy):
|
||||||
target_module=Linear1D_Row,
|
target_module=Linear1D_Row,
|
||||||
kwargs={
|
kwargs={
|
||||||
"fp8_communication": self.shard_config.fp8_communication,
|
"fp8_communication": self.shard_config.fp8_communication,
|
||||||
"use_zbv": self.shard_config.use_zbv,
|
"use_zbv": use_zbv,
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
SubModuleReplacementDescription(
|
SubModuleReplacementDescription(
|
||||||
|
@ -159,7 +163,7 @@ class MixtralPolicy(Policy):
|
||||||
kwargs={
|
kwargs={
|
||||||
"gather_output": True,
|
"gather_output": True,
|
||||||
"fp8_communication": self.shard_config.fp8_communication,
|
"fp8_communication": self.shard_config.fp8_communication,
|
||||||
"use_zbv": self.shard_config.use_zbv,
|
"use_zbv": use_zbv,
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
|
@ -195,7 +199,7 @@ class MixtralPolicy(Policy):
|
||||||
"tp_group": self.shard_config.tensor_parallel_process_group,
|
"tp_group": self.shard_config.tensor_parallel_process_group,
|
||||||
"moe_dp_group": self.shard_config.moe_dp_group,
|
"moe_dp_group": self.shard_config.moe_dp_group,
|
||||||
"fp8_communication": self.shard_config.fp8_communication,
|
"fp8_communication": self.shard_config.fp8_communication,
|
||||||
"use_zbv": self.shard_config.use_zbv,
|
"use_zbv": use_zbv,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
|
@ -330,6 +334,10 @@ class MixtralModelPolicy(MixtralPolicy):
|
||||||
class MixtralForCausalLMPolicy(MixtralPolicy):
|
class MixtralForCausalLMPolicy(MixtralPolicy):
|
||||||
def module_policy(self):
|
def module_policy(self):
|
||||||
policy = super().module_policy()
|
policy = super().module_policy()
|
||||||
|
if self.pipeline_stage_manager:
|
||||||
|
use_zbv = self.pipeline_stage_manager.use_zbv
|
||||||
|
else:
|
||||||
|
use_zbv = False
|
||||||
# TODO: assign pg mesh from plugin to all modules
|
# TODO: assign pg mesh from plugin to all modules
|
||||||
if self.shard_config.enable_tensor_parallelism:
|
if self.shard_config.enable_tensor_parallelism:
|
||||||
# add a new item for causal lm
|
# add a new item for causal lm
|
||||||
|
@ -342,7 +350,7 @@ class MixtralForCausalLMPolicy(MixtralPolicy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
gather_output=True,
|
gather_output=True,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
|
@ -392,6 +400,10 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
|
||||||
from transformers import MixtralForSequenceClassification
|
from transformers import MixtralForSequenceClassification
|
||||||
|
|
||||||
policy = super().module_policy()
|
policy = super().module_policy()
|
||||||
|
if self.pipeline_stage_manager:
|
||||||
|
use_zbv = self.pipeline_stage_manager.use_zbv
|
||||||
|
else:
|
||||||
|
use_zbv = False
|
||||||
|
|
||||||
if self.shard_config.enable_tensor_parallelism:
|
if self.shard_config.enable_tensor_parallelism:
|
||||||
# add a new item for sequence classification
|
# add a new item for sequence classification
|
||||||
|
@ -404,7 +416,7 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
|
||||||
kwargs=dict(
|
kwargs=dict(
|
||||||
gather_output=True,
|
gather_output=True,
|
||||||
fp8_communication=self.shard_config.fp8_communication,
|
fp8_communication=self.shard_config.fp8_communication,
|
||||||
use_zbv=self.shard_config.use_zbv,
|
use_zbv=use_zbv,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
|
@ -49,7 +49,6 @@ class ShardConfig:
|
||||||
make_vocab_size_divisible_by: int = 64
|
make_vocab_size_divisible_by: int = 64
|
||||||
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None
|
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None
|
||||||
extra_kwargs: Dict[str, Any] = field(default_factory=dict)
|
extra_kwargs: Dict[str, Any] = field(default_factory=dict)
|
||||||
use_zbv: bool = False
|
|
||||||
|
|
||||||
# For ring attention
|
# For ring attention
|
||||||
inner_ring_size: Optional[int] = None
|
inner_ring_size: Optional[int] = None
|
||||||
|
|
|
@ -5,8 +5,6 @@ import warnings
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
torch.autograd.set_detect_anomaly(True)
|
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
from data_utils import RandomDataset
|
from data_utils import RandomDataset
|
||||||
from model_utils import format_numel_str, get_model_numel
|
from model_utils import format_numel_str, get_model_numel
|
||||||
|
|
|
@ -8,12 +8,14 @@ import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from torch.testing import assert_close
|
from torch.testing import assert_close
|
||||||
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaModel
|
||||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||||
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
from colossalai.booster.booster import Booster
|
from colossalai.booster.booster import Booster
|
||||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import HybridParallelPlugin, MoeHybridParallelPlugin
|
||||||
from colossalai.cluster import ProcessGroupMesh
|
from colossalai.cluster import ProcessGroupMesh
|
||||||
from colossalai.interface import OptimizerWrapper
|
from colossalai.interface import OptimizerWrapper
|
||||||
from colossalai.logging import disable_existing_loggers
|
from colossalai.logging import disable_existing_loggers
|
||||||
|
@ -918,11 +920,181 @@ def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
|
@parameterize(
|
||||||
|
"config",
|
||||||
|
[
|
||||||
|
(0, 4, 1, 1),
|
||||||
|
# (1, 2, 2, 1),
|
||||||
|
# (1, 2, 1, 2),
|
||||||
|
# (1, 1, 2, 2),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def run_with_booster_hybridplugin(config: Tuple[int, ...]):
|
||||||
|
stage, pp_size, tp_size, sp_size = config
|
||||||
|
num_microbatches = pp_size
|
||||||
|
dist.get_world_size()
|
||||||
|
rank = dist.get_rank()
|
||||||
|
dtype, precision = torch.float16, "fp16"
|
||||||
|
torch.cuda.set_device(dist.get_rank())
|
||||||
|
|
||||||
|
########
|
||||||
|
# init base model
|
||||||
|
########
|
||||||
|
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
|
||||||
|
config = LlamaConfig(
|
||||||
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
||||||
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
||||||
|
num_hidden_layers=NUM_LAYERS,
|
||||||
|
num_attention_heads=NUM_HEADS,
|
||||||
|
num_key_value_heads=NUM_HEADS,
|
||||||
|
attn_implementation="flash_attention_2",
|
||||||
|
)
|
||||||
|
|
||||||
|
# init model with the same seed
|
||||||
|
seed_all(10086)
|
||||||
|
|
||||||
|
torch_model = LlamaModel(config).to(dtype).cuda()
|
||||||
|
# TODO: Support MixtralForCausalLM
|
||||||
|
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
||||||
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||||
|
# init schedule
|
||||||
|
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
||||||
|
mem_f = 34 * h + 5 * a * s
|
||||||
|
mem_w = -32 * h
|
||||||
|
mem_b = -mem_w - mem_f
|
||||||
|
graph = PipelineGraph(
|
||||||
|
n_stage=pp_size,
|
||||||
|
n_micro=num_microbatches,
|
||||||
|
f_cost=1,
|
||||||
|
b_cost=1,
|
||||||
|
w_cost=1,
|
||||||
|
c_cost=1,
|
||||||
|
f_mem=mem_f,
|
||||||
|
b_mem=mem_b,
|
||||||
|
w_mem=mem_w,
|
||||||
|
)
|
||||||
|
|
||||||
|
zbv_schedule = graph.get_v_schedule()
|
||||||
|
|
||||||
|
# init MoeHybridPlugin
|
||||||
|
plugin = HybridParallelPlugin(
|
||||||
|
pp_size=pp_size,
|
||||||
|
num_microbatches=pp_size,
|
||||||
|
tp_size=tp_size,
|
||||||
|
sp_size=sp_size,
|
||||||
|
zero_stage=stage,
|
||||||
|
enable_sequence_parallelism=sp_size > 1,
|
||||||
|
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
|
||||||
|
overlap_communication=False,
|
||||||
|
initial_scale=1,
|
||||||
|
precision=precision,
|
||||||
|
find_unused_parameters=True,
|
||||||
|
pp_style="zbv",
|
||||||
|
scheduler_nodes=zbv_schedule,
|
||||||
|
num_model_chunks=2,
|
||||||
|
)
|
||||||
|
|
||||||
|
dp_size = plugin.dp_size
|
||||||
|
|
||||||
|
booster = Booster(plugin=plugin)
|
||||||
|
|
||||||
|
########
|
||||||
|
# init pp model
|
||||||
|
########
|
||||||
|
|
||||||
|
parallel_model = deepcopy(torch_model)
|
||||||
|
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
|
||||||
|
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
|
||||||
|
# create different input along dp axis
|
||||||
|
seed_all(1453 + rank)
|
||||||
|
|
||||||
|
torch_model.train()
|
||||||
|
parallel_model.train()
|
||||||
|
for i in range(2):
|
||||||
|
# gen random input
|
||||||
|
# input = torch.rand(
|
||||||
|
# NUM_BATCH, NUM_TOK_PER_BATCH, NUM_HEADS, HIDDEN_SIZE_PER_HEAD, requires_grad=True
|
||||||
|
# ).cuda()
|
||||||
|
input_ids = torch.randint(0, torch_model.vocab_size, (NUM_BATCH, config.max_position_embeddings)).cuda()
|
||||||
|
attention_mask = torch.ones_like(input_ids).cuda()
|
||||||
|
input_ids.clone().cuda()
|
||||||
|
input_data = {"input_ids": input_ids, "attention_mask": attention_mask}
|
||||||
|
|
||||||
|
# dist.all_reduce(
|
||||||
|
# input, group=plugin.pp_group
|
||||||
|
# ) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
|
||||||
|
|
||||||
|
# dist.all_reduce(input, group=plugin.tp_group) # tp group duplicate input
|
||||||
|
# dist.all_reduce(input, group=plugin.sp_group) # sp group duplicate input
|
||||||
|
|
||||||
|
# run the model with hybrid parallel
|
||||||
|
if booster.plugin.stage_manager is not None:
|
||||||
|
# for test with pp
|
||||||
|
data_iter = iter([input_data])
|
||||||
|
sharded_output = booster.execute_pipeline(
|
||||||
|
data_iter,
|
||||||
|
parallel_model,
|
||||||
|
lambda x, y: x.last_hidden_state.mean(),
|
||||||
|
parallel_optimizer,
|
||||||
|
return_loss=True,
|
||||||
|
return_outputs=True,
|
||||||
|
)
|
||||||
|
# stage 0 chunk 0
|
||||||
|
parallel_output = None
|
||||||
|
if (
|
||||||
|
booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
|
||||||
|
and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
|
||||||
|
):
|
||||||
|
parallel_output = sharded_output["loss"]
|
||||||
|
else:
|
||||||
|
parallel_output = torch.tensor(12345.0, device="cuda")
|
||||||
|
# broadcast along pp axis
|
||||||
|
dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# for test without pp
|
||||||
|
parallel_output = parallel_model(
|
||||||
|
input_ids=input_data["input_ids"],
|
||||||
|
attention_mask=input_data["attention_mask"],
|
||||||
|
).last_hidden_state.mean()
|
||||||
|
parallel_optimizer.backward(parallel_output)
|
||||||
|
parallel_optimizer.step()
|
||||||
|
parallel_optimizer.zero_grad()
|
||||||
|
dist.all_reduce(parallel_output, group=plugin.dp_group)
|
||||||
|
|
||||||
|
# ===================================================================================
|
||||||
|
# run normal model with all dp(different) inputs
|
||||||
|
all_inputs = [input_data for _ in range(dp_size)]
|
||||||
|
# dist.all_gather(all_inputs, input, group=plugin.dp_group)
|
||||||
|
torch_output_sum = 0
|
||||||
|
for input_data_ in all_inputs:
|
||||||
|
torch_output = torch_model(
|
||||||
|
input_ids=input_data_["input_ids"],
|
||||||
|
attention_mask=input_data_["attention_mask"],
|
||||||
|
).last_hidden_state.mean()
|
||||||
|
torch_output.backward()
|
||||||
|
torch_output_sum += torch_output.detach()
|
||||||
|
# print(f"parallel_output {parallel_output} torch_output_sum {torch_output_sum}")
|
||||||
|
# avg dp grads follows zero optimizer
|
||||||
|
for p in torch_model.parameters():
|
||||||
|
if p.grad is not None:
|
||||||
|
p.grad /= dp_size
|
||||||
|
torch_optimizer.step()
|
||||||
|
torch_optimizer.zero_grad()
|
||||||
|
|
||||||
|
print(f"loop {i} rank {dist.get_rank()} parallel_output {parallel_output} torch_output_sum {torch_output_sum}")
|
||||||
|
# assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
||||||
|
# print(f"rank {dist.get_rank()} config {test_config} test passed")
|
||||||
|
clear_layout_converter()
|
||||||
|
Randomizer.reset_index()
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, port):
|
||||||
disable_existing_loggers()
|
disable_existing_loggers()
|
||||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||||
# run_fwd_bwd_vschedule_with_optim()
|
|
||||||
run_with_booster_moehybridplugin()
|
run_with_booster_moehybridplugin()
|
||||||
|
# run_with_booster_hybridplugin()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
|
|
|
@ -1,628 +0,0 @@
|
||||||
import gc
|
|
||||||
import time
|
|
||||||
from copy import deepcopy
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from torch.testing import assert_close
|
|
||||||
|
|
||||||
|
|
||||||
def get_model_numel(model):
|
|
||||||
return sum(p.numel() for p in model.parameters()) / 1024**2
|
|
||||||
|
|
||||||
|
|
||||||
# Step1: dx = w*dy
|
|
||||||
def backward_b(loss, x, model):
|
|
||||||
torch.autograd.backward(loss, inputs=x, retain_graph=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Step2: dummy dw = x*dy
|
|
||||||
def backward_w(loss, model):
|
|
||||||
torch.autograd.backward(loss, inputs=list(model.parameters()))
|
|
||||||
|
|
||||||
|
|
||||||
def test_double_dx_dw_split_nsync():
|
|
||||||
device = "cuda:0"
|
|
||||||
model = nn.Linear(4096, 4096, bias=None).to(device=device)
|
|
||||||
# print(f"model numel {get_model_numel(model)}") # 4GB
|
|
||||||
x1 = torch.rand(4096, 4096).to(device=device)
|
|
||||||
x2 = torch.rand(4096, 4096).to(device=device)
|
|
||||||
ref_model = deepcopy(model)
|
|
||||||
ref_x1 = x1.clone()
|
|
||||||
ref_x2 = x1.clone()
|
|
||||||
|
|
||||||
# first step
|
|
||||||
x1.requires_grad_()
|
|
||||||
x2.requires_grad_()
|
|
||||||
ref_x1.requires_grad_()
|
|
||||||
ref_x2.requires_grad_()
|
|
||||||
|
|
||||||
# loss for dx_dw bwd
|
|
||||||
loss1 = model(x1).sum()
|
|
||||||
loss2 = model(x2).sum()
|
|
||||||
|
|
||||||
# loss for common bwd
|
|
||||||
ref_loss1 = ref_model(ref_x1).sum()
|
|
||||||
ref_loss2 = ref_model(ref_x2).sum()
|
|
||||||
|
|
||||||
# dx1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_b_start_time = time.time()
|
|
||||||
backward_b(loss1, x1, model)
|
|
||||||
bwd_b_end_time = time.time()
|
|
||||||
print(f"loss_1 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
||||||
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is None
|
|
||||||
assert x1.grad is not None
|
|
||||||
|
|
||||||
# dx2
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_b_start_time = time.time()
|
|
||||||
backward_b(loss2, x2, model)
|
|
||||||
bwd_b_end_time = time.time()
|
|
||||||
print(f"loss_2 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
||||||
|
|
||||||
# dw1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_w_start_time = time.time()
|
|
||||||
backward_w(loss1, model)
|
|
||||||
bwd_w_end_time = time.time()
|
|
||||||
print(f"loss_1 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is not None
|
|
||||||
|
|
||||||
# common bwd 1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
comm_bwd_start_time = time.time()
|
|
||||||
ref_loss1.backward()
|
|
||||||
comm_bwd_end_time = time.time()
|
|
||||||
print(f"loss_1 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
||||||
|
|
||||||
# # assert dx1 & dw1 == bwd 1
|
|
||||||
# assert_close(x1.grad, ref_x1.grad)
|
|
||||||
# for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
||||||
# assert_close(p1, p2)
|
|
||||||
# assert_close(p1.grad, p2.grad)
|
|
||||||
|
|
||||||
# dw2
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_w_start_time = time.time()
|
|
||||||
backward_w(loss2, model)
|
|
||||||
bwd_w_end_time = time.time()
|
|
||||||
print(f"loss_2 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
||||||
|
|
||||||
# common bwd 2
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
comm_bwd_start_time = time.time()
|
|
||||||
ref_loss2.backward()
|
|
||||||
comm_bwd_end_time = time.time()
|
|
||||||
print(f"loss_2 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
||||||
|
|
||||||
# # assert dx2 & dw2 == bwd 2
|
|
||||||
# assert_close(x2.grad, ref_x2.grad)
|
|
||||||
# for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
||||||
# print(f"bwd2:\n p1 {p1.grad},\n p2 {p2.grad}\n")
|
|
||||||
# assert_close(p1, p2)
|
|
||||||
# assert_close(p1.grad, p2.grad)
|
|
||||||
|
|
||||||
|
|
||||||
def test_double_dx_dw_split_sync():
|
|
||||||
device = "cuda:0"
|
|
||||||
model = nn.Linear(8, 8, bias=None).to(device=device)
|
|
||||||
print(f"model size {get_model_numel(model)} ") # 4GB
|
|
||||||
x1 = torch.rand(8, 8).to(device=device)
|
|
||||||
x2 = torch.rand(8, 8).to(device=device)
|
|
||||||
|
|
||||||
# x1 = torch.ones(8, 8).to(device=device)
|
|
||||||
# x2 = torch.ones(8, 8).to(device=device)
|
|
||||||
|
|
||||||
ref_model = deepcopy(model)
|
|
||||||
ref_x1 = x1.clone()
|
|
||||||
ref_x2 = x2.clone()
|
|
||||||
|
|
||||||
x1.requires_grad_()
|
|
||||||
x2.requires_grad_()
|
|
||||||
ref_x1.requires_grad_()
|
|
||||||
ref_x2.requires_grad_()
|
|
||||||
|
|
||||||
############
|
|
||||||
# step1:
|
|
||||||
############
|
|
||||||
|
|
||||||
# loss1
|
|
||||||
loss1 = model(x1).sum()
|
|
||||||
|
|
||||||
# ref_loss1
|
|
||||||
ref_model(ref_x1).sum()
|
|
||||||
|
|
||||||
# dx1
|
|
||||||
backward_b(loss1, x1, model)
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is None
|
|
||||||
assert x1.grad is not None
|
|
||||||
|
|
||||||
# dw1
|
|
||||||
backward_w(loss1, model)
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is not None
|
|
||||||
|
|
||||||
# common bwd 1
|
|
||||||
# ref_loss1.backward()
|
|
||||||
|
|
||||||
# assert dx1 & dw1 == bwd 1
|
|
||||||
assert_close(x1.grad, ref_x1.grad)
|
|
||||||
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
||||||
assert_close(p1, p2)
|
|
||||||
assert_close(p1.grad, p2.grad)
|
|
||||||
|
|
||||||
############
|
|
||||||
# step2:
|
|
||||||
############
|
|
||||||
|
|
||||||
# loss2
|
|
||||||
loss2 = model(x2).sum()
|
|
||||||
|
|
||||||
# ref_loss2
|
|
||||||
ref_loss2 = ref_model(ref_x2).sum()
|
|
||||||
|
|
||||||
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
||||||
print(f"bwd2:\n p1 {p1.grad},\n p2 {p2.grad}\n")
|
|
||||||
assert_close(p1, p2)
|
|
||||||
assert_close(p1.grad, p2.grad)
|
|
||||||
|
|
||||||
# dx2
|
|
||||||
backward_b(loss2, x2, model)
|
|
||||||
|
|
||||||
# dw2
|
|
||||||
backward_w(loss2, model)
|
|
||||||
|
|
||||||
# common bwd 2
|
|
||||||
ref_loss2.backward()
|
|
||||||
|
|
||||||
# assert dx2 & dw2 == bwd 2
|
|
||||||
assert_close(x2.grad, ref_x2.grad)
|
|
||||||
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
|
|
||||||
print(f"bwd2:\n p1 {p1.grad},\n p2 {p2.grad}\n")
|
|
||||||
assert_close(p1, p2)
|
|
||||||
assert_close(p1.grad, p2.grad)
|
|
||||||
|
|
||||||
|
|
||||||
def deallocate_output_tensor(out):
|
|
||||||
"""Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
|
|
||||||
|
|
||||||
This method should be called right after the output tensor has been
|
|
||||||
sent to the next pipeline stage. At this point, the output tensor is
|
|
||||||
only useful for its '.grad_fn' field, and not its '.data'.
|
|
||||||
"""
|
|
||||||
assert isinstance(out, torch.Tensor), "expected Tensor, found %s." % type(out).__name__
|
|
||||||
assert out._base is None, "counter-productive to free a view of another tensor."
|
|
||||||
out.data = torch.empty(
|
|
||||||
(1,),
|
|
||||||
device=out.device,
|
|
||||||
dtype=out.dtype,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
IN_DIM = 8192
|
|
||||||
OUT_DIM = 8192
|
|
||||||
NUM_LAYER = 3
|
|
||||||
|
|
||||||
|
|
||||||
class MlpModel(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.layers = nn.ModuleList([nn.Linear(IN_DIM, OUT_DIM, bias=None) for _ in range(NUM_LAYER)])
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for layer in self.layers:
|
|
||||||
x = layer(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, with_qkv=True):
|
|
||||||
super().__init__()
|
|
||||||
self.num_heads = num_heads
|
|
||||||
head_dim = dim // num_heads
|
|
||||||
self.scale = qk_scale or head_dim**-0.5
|
|
||||||
self.with_qkv = with_qkv
|
|
||||||
if self.with_qkv:
|
|
||||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
||||||
self.proj = nn.Linear(dim, dim)
|
|
||||||
self.proj_drop = nn.Dropout(proj_drop)
|
|
||||||
self.attn_drop = nn.Dropout(attn_drop)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
B, N, C = x.shape
|
|
||||||
if self.with_qkv:
|
|
||||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
||||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
||||||
else:
|
|
||||||
qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
||||||
q, k, v = qkv, qkv, qkv
|
|
||||||
|
|
||||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
||||||
attn = attn.softmax(dim=-1)
|
|
||||||
attn = self.attn_drop(attn)
|
|
||||||
|
|
||||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
||||||
if self.with_qkv:
|
|
||||||
x = self.proj(x)
|
|
||||||
x = self.proj_drop(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def mem_dx_dw():
|
|
||||||
device = "cuda:0"
|
|
||||||
# model = nn.Linear(IN_DIM, OUT_DIM, bias=None).to(device=device)
|
|
||||||
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
model = MlpModel().to(device=device)
|
|
||||||
print(f"model numel {get_model_numel(model)}") # 4GB
|
|
||||||
print(f"After init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
print(f"Before init x1&2&3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
x1 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
||||||
x2 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
||||||
x3 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
||||||
|
|
||||||
x1.requires_grad_()
|
|
||||||
x2.requires_grad_()
|
|
||||||
x3.requires_grad_()
|
|
||||||
print(f"After init x1&2&3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
############
|
|
||||||
# step1:
|
|
||||||
############
|
|
||||||
print(f"\nStep1")
|
|
||||||
|
|
||||||
# loss1
|
|
||||||
print(f"Before Fwd x1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
y1 = model(x1)
|
|
||||||
print(f"After Fwd x1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
print(f"Before loss1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
loss1 = y1.sum()
|
|
||||||
print(f"After loss1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
# dx1
|
|
||||||
backward_b(loss1, x1, model)
|
|
||||||
|
|
||||||
# dw1
|
|
||||||
backward_w(loss1, model)
|
|
||||||
|
|
||||||
deallocate_output_tensor(x1)
|
|
||||||
deallocate_output_tensor(y1)
|
|
||||||
# del x1
|
|
||||||
# del y1
|
|
||||||
print(f"After del x1&y1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
# print(f"\n Step1:collect:{gc.collect()}")
|
|
||||||
# print(f"object: {gc.get_objects()}")
|
|
||||||
# print(f"garbage: {gc.garbage}")
|
|
||||||
|
|
||||||
############
|
|
||||||
# step2:
|
|
||||||
############
|
|
||||||
print(f"\nStep2")
|
|
||||||
|
|
||||||
# loss2
|
|
||||||
y2 = model(x2)
|
|
||||||
loss2 = y2.sum()
|
|
||||||
|
|
||||||
# dx2
|
|
||||||
backward_b(loss2, x2, model)
|
|
||||||
|
|
||||||
# dw2
|
|
||||||
backward_w(loss2, model)
|
|
||||||
deallocate_output_tensor(x2)
|
|
||||||
deallocate_output_tensor(y2)
|
|
||||||
# del x2
|
|
||||||
# del y2
|
|
||||||
print(f"After del x2&y2: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
print(f"\n Step2:collect:{gc.collect()}")
|
|
||||||
# print(f"object: {gc.get_objects()}")
|
|
||||||
print(f"garbage: {gc.garbage}")
|
|
||||||
|
|
||||||
############
|
|
||||||
# step3:
|
|
||||||
############
|
|
||||||
|
|
||||||
print(f"\nStep3")
|
|
||||||
|
|
||||||
# loss3
|
|
||||||
y3 = model(x3)
|
|
||||||
loss3 = y3.sum()
|
|
||||||
|
|
||||||
# dx2
|
|
||||||
backward_b(loss3, x3, model)
|
|
||||||
|
|
||||||
# dw2
|
|
||||||
backward_w(loss3, model)
|
|
||||||
|
|
||||||
deallocate_output_tensor(x3)
|
|
||||||
deallocate_output_tensor(y3)
|
|
||||||
# del x3
|
|
||||||
# del y3
|
|
||||||
|
|
||||||
print(f"After del x3&y3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
print(f"\n Step3:collect:{gc.collect()}")
|
|
||||||
# print(f"object: {gc.get_objects()}")
|
|
||||||
print(f"garbage: {gc.garbage}")
|
|
||||||
|
|
||||||
|
|
||||||
# del activation
|
|
||||||
def activation_dx_dw():
|
|
||||||
device = "cuda:0"
|
|
||||||
# model = nn.Linear(IN_DIM, OUT_DIM, bias=None).to(device=device)
|
|
||||||
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
model = MlpModel().to(device=device)
|
|
||||||
x1 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
||||||
x2 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
||||||
x3 = torch.rand(IN_DIM, OUT_DIM).to(device=device)
|
|
||||||
|
|
||||||
x1.requires_grad_()
|
|
||||||
x2.requires_grad_()
|
|
||||||
x3.requires_grad_()
|
|
||||||
print(f"After init Model, x1,x2,x3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
activations = {}
|
|
||||||
|
|
||||||
def register_hooks(module):
|
|
||||||
def activation_hook(module, input, output):
|
|
||||||
activations[f"{module.__class__.__name__}_{id(module)}"] = output.detach()
|
|
||||||
|
|
||||||
def bwd_hook(module, grad_input, grad_output):
|
|
||||||
del activations[f"{module.__class__.__name__}_{id(module)}"]
|
|
||||||
|
|
||||||
module.register_forward_hook(activation_hook)
|
|
||||||
module.register_backward_hook(bwd_hook)
|
|
||||||
|
|
||||||
model.apply(register_hooks)
|
|
||||||
|
|
||||||
############
|
|
||||||
# step1:
|
|
||||||
############
|
|
||||||
print(f"\nStep1")
|
|
||||||
|
|
||||||
# loss1
|
|
||||||
loss1 = model(x1).sum()
|
|
||||||
|
|
||||||
# dx1
|
|
||||||
backward_b(loss1, x1, model)
|
|
||||||
|
|
||||||
# dw1
|
|
||||||
backward_w(loss1, model)
|
|
||||||
|
|
||||||
del loss1, x1
|
|
||||||
print(f"After del x1&y1: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
############
|
|
||||||
# step2:
|
|
||||||
############
|
|
||||||
print(f"\nStep2")
|
|
||||||
|
|
||||||
# loss2
|
|
||||||
loss2 = model(x2).sum()
|
|
||||||
|
|
||||||
# dx2
|
|
||||||
backward_b(loss2, x2, model)
|
|
||||||
|
|
||||||
# dw2
|
|
||||||
backward_w(loss2, model)
|
|
||||||
|
|
||||||
# deallocate_output_tensor(x2)
|
|
||||||
# deallocate_output_tensor(loss2)
|
|
||||||
del x2, loss2
|
|
||||||
print(f"After del x2&y2: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
############
|
|
||||||
# step3:
|
|
||||||
############
|
|
||||||
print(f"\nStep3")
|
|
||||||
|
|
||||||
# loss3
|
|
||||||
loss3 = model(x3).sum()
|
|
||||||
|
|
||||||
# dx2
|
|
||||||
backward_b(loss3, x3, model)
|
|
||||||
|
|
||||||
# dw2
|
|
||||||
backward_w(loss3, model)
|
|
||||||
|
|
||||||
del x3, loss3
|
|
||||||
|
|
||||||
print(f"After del x3&y3: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
|
|
||||||
# text dx dw in model chunk
|
|
||||||
def model_chunk_dx_dw():
|
|
||||||
device = "cuda:0"
|
|
||||||
num_layers = 4
|
|
||||||
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
model = MlpModel(in_dim=4096, out_dim=4096, num_layers=num_layers).to(device=device)
|
|
||||||
x = torch.rand(4096, 4096).to(device=device)
|
|
||||||
x.requires_grad_()
|
|
||||||
|
|
||||||
model_chunk_0 = torch.nn.ModuleList() # for layer 1 & 2
|
|
||||||
model_chunk_1 = torch.nn.ModuleList() # for layer 3 & 4
|
|
||||||
|
|
||||||
for idx, sub_model in enumerate(model.layers):
|
|
||||||
if idx < 2:
|
|
||||||
model_chunk_0.append(sub_model).cuda()
|
|
||||||
else:
|
|
||||||
model_chunk_1.append(sub_model).cuda()
|
|
||||||
|
|
||||||
print(f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
# Step1:chunk 0 fwd
|
|
||||||
activation = dict() # layer_id: activation
|
|
||||||
out = x
|
|
||||||
for i in range(len(model_chunk_0)):
|
|
||||||
layer = model_chunk_0[i]
|
|
||||||
activation[i] = layer(out)
|
|
||||||
print(f"After chunk0 fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
# Step2:chunk 1 fwd
|
|
||||||
for i in range(len(model_chunk_1)):
|
|
||||||
layer = model_chunk_0[i]
|
|
||||||
activation[i + 2] = layer(out)
|
|
||||||
print(f"After chunk1 fwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
||||||
|
|
||||||
# Step3:chunk 1 bwd b: dx=w*dy & bwd w:dw=x*dy
|
|
||||||
# visit layer reversely
|
|
||||||
for i in range(len(model_chunk_1) - 1, -1, -1):
|
|
||||||
layer = model_chunk_1[i]
|
|
||||||
global_layer_idx = i + 2
|
|
||||||
prev_global_layer_idx = i + 1 if i + 1 > 0 else None
|
|
||||||
i + 3 if i + 3 < 4 else None
|
|
||||||
|
|
||||||
# bwd b
|
|
||||||
if global_layer_idx == num_layers - 1: # last layer in last chunk; calculate loss
|
|
||||||
loss = activation[global_layer_idx].sum()
|
|
||||||
x = activation[prev_global_layer_idx]
|
|
||||||
backward_b(loss, x, layer)
|
|
||||||
else:
|
|
||||||
loss = activation[global_layer_idx].sum()
|
|
||||||
x = activation[prev_global_layer_idx]
|
|
||||||
backward_b(loss, x, layer)
|
|
||||||
|
|
||||||
# bwd w
|
|
||||||
backward_w(loss, layer)
|
|
||||||
|
|
||||||
|
|
||||||
def test_dx_dw_linear_benchmark():
|
|
||||||
device = "cuda:0"
|
|
||||||
model = nn.Linear(4096, 4096, bias=None).to(device=device)
|
|
||||||
# print(f"model numel {get_model_numel(model)}") # 4GB
|
|
||||||
x1 = torch.rand(4096, 4096).to(device=device)
|
|
||||||
# x2 = torch.rand(4096, 4096).to(device=device)
|
|
||||||
ref_model = deepcopy(model)
|
|
||||||
ref_x1 = x1.clone()
|
|
||||||
# ref_x2 = x1.clone()
|
|
||||||
|
|
||||||
# first step
|
|
||||||
x1.requires_grad_()
|
|
||||||
# x2.requires_grad_()
|
|
||||||
ref_x1.requires_grad_()
|
|
||||||
# ref_x2.requires_grad_()
|
|
||||||
|
|
||||||
# loss for dx_dw bwd
|
|
||||||
loss1 = model(x1).sum()
|
|
||||||
# loss2 = model(x2).sum()
|
|
||||||
|
|
||||||
# loss for common bwd
|
|
||||||
ref_model(ref_x1).sum()
|
|
||||||
# ref_loss2 = ref_model(ref_x2).sum()
|
|
||||||
|
|
||||||
with torch.profiler.profile(
|
|
||||||
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
|
|
||||||
# schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=1),
|
|
||||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
||||||
f"/home/nvme-share/home/duanjunwen/ColossalAI/tests/test_pipeline/test_schedule"
|
|
||||||
),
|
|
||||||
record_shapes=True,
|
|
||||||
profile_memory=True,
|
|
||||||
with_stack=True,
|
|
||||||
with_flops=True,
|
|
||||||
) as prof:
|
|
||||||
# dx1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_b_start_time = time.time()
|
|
||||||
backward_b(loss1, x1, model)
|
|
||||||
bwd_b_end_time = time.time()
|
|
||||||
print(f"loss_1 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
||||||
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is None
|
|
||||||
assert x1.grad is not None
|
|
||||||
|
|
||||||
# dw1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_w_start_time = time.time()
|
|
||||||
backward_w(loss1, model)
|
|
||||||
bwd_w_end_time = time.time()
|
|
||||||
print(f"loss_1 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is not None
|
|
||||||
|
|
||||||
# # common bwd 1
|
|
||||||
# torch.cuda.synchronize()
|
|
||||||
# comm_bwd_start_time = time.time()
|
|
||||||
# ref_loss1.backward()
|
|
||||||
# comm_bwd_end_time = time.time()
|
|
||||||
# print(f"loss_1 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
||||||
|
|
||||||
|
|
||||||
def test_dx_dw_attn_benchmark():
|
|
||||||
device = "cuda:0"
|
|
||||||
model = Attention(dim=4096).to(device=device)
|
|
||||||
# print(f"model numel {get_model_numel(model)}") # 4GB
|
|
||||||
x1 = torch.rand(1, 256, 4096).to(device=device)
|
|
||||||
# x2 = torch.rand(1, 256, 4096).to(device=device)
|
|
||||||
ref_model = deepcopy(model)
|
|
||||||
ref_x1 = x1.clone()
|
|
||||||
# ref_x2 = x1.clone()
|
|
||||||
|
|
||||||
# first step
|
|
||||||
x1.requires_grad_()
|
|
||||||
# x2.requires_grad_()
|
|
||||||
ref_x1.requires_grad_()
|
|
||||||
# ref_x2.requires_grad_()
|
|
||||||
|
|
||||||
# loss for dx_dw bwd
|
|
||||||
loss1 = model(x1).sum()
|
|
||||||
# loss2 = model(x2).sum()
|
|
||||||
|
|
||||||
# loss for common bwd
|
|
||||||
ref_model(ref_x1).sum()
|
|
||||||
# ref_loss2 = ref_model(ref_x2).sum()
|
|
||||||
|
|
||||||
with torch.profiler.profile(
|
|
||||||
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
|
|
||||||
# schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=1),
|
|
||||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
||||||
f"/home/nvme-share/home/duanjunwen/ColossalAI/tests/test_pipeline/test_schedule"
|
|
||||||
),
|
|
||||||
record_shapes=True,
|
|
||||||
profile_memory=True,
|
|
||||||
with_stack=True,
|
|
||||||
with_flops=True,
|
|
||||||
) as prof:
|
|
||||||
# dx1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_b_start_time = time.time()
|
|
||||||
backward_b(loss1, x1, model)
|
|
||||||
bwd_b_end_time = time.time()
|
|
||||||
print(f"loss_1 bwd B runtime {bwd_b_end_time - bwd_b_start_time}")
|
|
||||||
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is None
|
|
||||||
assert x1.grad is not None
|
|
||||||
|
|
||||||
# dw1
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
bwd_w_start_time = time.time()
|
|
||||||
backward_w(loss1, model)
|
|
||||||
bwd_w_end_time = time.time()
|
|
||||||
print(f"loss_1 bwd W runtime {bwd_w_end_time - bwd_w_start_time}")
|
|
||||||
for p in model.parameters():
|
|
||||||
assert p.grad is not None
|
|
||||||
|
|
||||||
# # common bwd 1
|
|
||||||
# torch.cuda.synchronize()
|
|
||||||
# comm_bwd_start_time = time.time()
|
|
||||||
# ref_loss1.backward()
|
|
||||||
# comm_bwd_end_time = time.time()
|
|
||||||
# print(f"loss_1 comm bwd runtime {comm_bwd_end_time - comm_bwd_start_time}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# test_dx_dw_split()
|
|
||||||
# test_double_dx_dw_split_nsync()
|
|
||||||
# test_double_dx_dw_split_sync()
|
|
||||||
# mem_dx_dw()
|
|
||||||
# activation_dx_dw()
|
|
||||||
# test_dx_dw_linear_benchmark()
|
|
||||||
test_dx_dw_attn_benchmark()
|
|
|
@ -277,7 +277,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
"precision": "fp16",
|
"precision": "fp16",
|
||||||
"initial_scale": 1,
|
"initial_scale": 1,
|
||||||
},
|
},
|
||||||
# TODO: assert layer error
|
# # TODO: assert layer error
|
||||||
# {
|
# {
|
||||||
# "tp_size": 2,
|
# "tp_size": 2,
|
||||||
# "pp_size": 2,
|
# "pp_size": 2,
|
||||||
|
|
Loading…
Reference in New Issue