polish code

pull/2484/head
jiaruifang 2023-01-16 14:45:06 +08:00
parent 9cba38b492
commit e64a05b38b
1 changed files with 22 additions and 16 deletions

View File

@ -1,22 +1,22 @@
import gzip
import random
from time import time
from functools import partial
from time import time
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.optim as optim
import tqdm
from packaging import version
from palm_pytorch import PaLM
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel import GeminiDDP, ZeroDDP
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
from colossalai.utils import MultiTimer, get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
@ -69,6 +69,7 @@ def parse_args():
args = parser.parse_args()
return args
# helpers
def cycle(loader):
while True:
@ -79,12 +80,15 @@ def cycle(loader):
def decode_token(token):
return str(chr(max(32, token)))
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
@ -92,6 +96,7 @@ def get_model_size(model: nn.Module):
total_numel += p.numel()
return total_numel
# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
cai_version = colossalai.__version__
@ -115,6 +120,7 @@ def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy:
raise NotImplemented(f"CAI version {cai_version} is not supported")
return model
## Parameter Sharding Strategies for Tensor Parallelism
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
@ -128,6 +134,7 @@ def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(-1, param, pg)
# Tensor Parallel
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
"""tensor_parallelize
@ -159,7 +166,7 @@ def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
args = parse_args()
if args.distplan not in ["colossalai", "pytorch"]:
raise TypeError(f"{args.distplan} is error")
raise TypeError(f"{args.distplan} is error")
disable_existing_loggers()
colossalai.launch_from_torch(config={})
logger = get_dist_logger()
@ -216,7 +223,7 @@ else:
model.cuda()
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# model is shared after TP
# model is shared after TP
numel = get_model_size(model)
get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN)
@ -251,7 +258,7 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
)
if i >= WARMUP_BATCHES:
tflops_list.append(step_tflops)
else:
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
@ -261,18 +268,17 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
tflops_list.sort()
median_index = ((NUM_BATCHES - WARMUP_BATCHES) >> 1) + WARMUP_BATCHES
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
# TODO
# if i % VALIDATE_EVERY == 0:
# model.eval()
# with torch.no_grad():
# loss = model(next(val_loader))
# print(f"validation loss: {loss.item()}")
# TODO
# if i % VALIDATE_EVERY == 0:
# model.eval()
# with torch.no_grad():
# loss = model(next(val_loader))
# print(f"validation loss: {loss.item()}")
# if i % GENERATE_EVERY == 0:
# model.eval()
@ -282,4 +288,4 @@ logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
# output_str = decode_tokens(sample[0])
# print(output_str)
# print(output_str)